第二十一章 一元二次方程 教案 总结成文,为熟练运用作准备 使学生巩固提高 学生独立完成,教师巡 课本练习: 视指导,了解学生掌握 四、小结归纳 情况,并集中订正 21.根据平方根的意义,用直接开平方法解形如(mx+n)=p(p≥0)的一 元二次方程. 纳入知识系统 2.用配方法解二次项系数是1,一次项系数是偶数的一元二次方程,特别 地,移项后方程两边同加一次项系数的一半的平方. 师生归纳总结,学生作3.在用方程解决实际问题时,方程的根一定全实际是问题的解,但是实笔记. 际问题的解一定是方程的根. 五、作业设计 必做:P16:1、2、3(1)(2) 选做:下面补充作业 补充作业: 1.若8x2-16=0,则x的值是_________. 2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________. 3.若x2-4x+p=(x+q)2,那么p、q的值分别是( ). A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-2 4.方程3x2+9=0的根为( ). A.3 B.-3 C.±3 D.无实数根 5.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是( ). A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1 C.x2+8x+42=1 D.x2-4x+4=-11 6.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),?另三边用木栏围成,木栏长40m. (1)鸡场的面积能达到180m2吗?能达到200m吗? (2)鸡场的面积能达到210m2吗? 教 学 反 思 用配方法解二次项系数是1且一次项系数是偶数的一元二次方程的一般步骤及注意事项: 先将常数项移到方程右边,然后给方程两边都加上一次项系数的一半的平方,使左边配成完全平方式的三项式形式,再将左边写成平方形2式,右边完成有理数加法运算,到此,方程变形为(x+m)=n(n≥0)的形式. 三、课堂训练
第6页
第二十一章 一元二次方程 教案
教学时间 教学媒体 教 学 目 标 知识 技能 过程 方法 情感 态度 多媒体 1.进一步理解配方法和配方的目的. 2.掌握运用配方法解一元二次方程的步骤. 3.会利用配方法熟练灵活地解二次项系数不是1的一元二次方程. 通过对比用配方法解二次项系数是1的一元二次方程,解二次项系数不是1的一元二次方程,经历从简单到复杂的过程,对配方法全面认识. 1. 通过对配方法的探究活动,培养学生勇于探索的学习精神. 2. 感受数学的严谨性和数学结论的确定性. 3. 温故知新,培养学生利用旧知解决问题的能力. 用配方法解一元二次方程 用配方法解二次项系数不是1的一元二次方程,首先方程两边都除以二次项系数,将方程化为教学难点 二次项系数是1的类型. 课题 21.2.1配方法(2) 课型 新授 教学重点 教学过程设计
教学程序及教学内容 师生行为 设计意图 一、复习引入 2回顾上节课内容导语:我们在上节课,已经学习了用直接开平方法解形如x=p(p≥0)点题,板书课题. 2以得以衔接 或(mx+n)=p(p≥0)的一元二次方程,以及用配方法解二次项系数是 1,一次项系数是偶数的一元二次方程,这节课继续学习配方法解一元二 次方程. 二、探究新知 复习完全平方式1.填空: 1x2?8x?____??x?____2x2?x?____??x?____?2 的,为下面用配方○?2 ○ 法解方程作铺垫 923x2?___?4??x?____4○?2 ○x2?___???x?____? 41,让学生独立完成○复 1x2?8x?a是完全平方式,2.填空: ○a= 习巩固上节课内容. 2x2?mx?9是完全平方式, ○m? 1○2结通过对比方程○温故知新,对比探1 x2-8x+7=0 ○22x2+8x-2=0 3.解下列方程:○2,究