ANSYS结构非线性分析指南-第一章

.

第一章 结构非线性分析概述

1.1 什么是结构非线性

在日常生活中,经常会遇到结构非线性。例如,当用钉书针钉书时,金属钉书钉将永久地弯曲成一个不同的形状(图1-1a)。如果你在一个木架上放置重物,随着时间的推移木架将越来越下垂(图1-1b)。当在汽车或卡车上装载货物时,它的轮胎和下面路面间接触面将随货物重量而变化(图1-1c)。如果将上述例子的载荷变形曲线画出来,用户将发现它们都显示了非线性结构的基本特征—结构刚度改变。

图1-1 结构非线性行为的常见例子

引起结构非线性的原因很多,它可以被分成三种主要类型:状态改变、几何非线性、材料非线性。

1.1.1 状态变化(包括接触)

许多普通结构表现出一种与状态相关的非线性行为。例如,一根只能拉伸的电缆可能是松的,也可能是绷紧的。轴承套可能是接触的,也可能是不接触的。冻土可能是冻结的,也可能是融化的。这些系统的刚度由于系统状态的改变而变化。状态改变也许和载荷直接有关(如在电缆情况中), 也

.

.

可能由某种外部原因引起(如在冻土中的紊乱热力学条件)。

接触是一种很普遍的非线性行为。接触是状态变化非线性中一个特殊而重要的子集。参见第五章。

1.1.2 几何非线性

如果结构经受大变形,它几何形状的变化可能会引起结构的非线性响应。一个例子是图1-2所示的钓鱼杆。随着垂向载荷的增加,杆不断弯曲以致于力臂明显地减少,导致杆端显示出在较高载荷下不断增长的刚性。几何非线性的特点是大位移、大转动。

图1-2 钓鱼杆体现的几何非线性

1.1.3 材料非线性

非线性的应力─应变关系是结构非线性行为的常见原因。许多因素可以影响材料的应力─应变性质,包括加载历史(如在弹─塑性响应情况下)、环境状况(如温度)、加载的时间总量(如在蠕变响应情况下)。

1.2 非线性分析的基本知识

1.2.1 方程求解

ANSYS程序的方程求解器计算一系列的联立线性方程来预测工程系统的响应。然而,非线性结构的行为不能直接用这样一系列的线性方程表示。需要一系列的带校正的线性近似来求解非线性问题。

.

.

一种近似的非线性求解是将载荷分成一系列的载荷增量。可以在几个载荷步内或者在一个载荷步的几个子步内施加载荷增量。在每一个增量的求解完成后,继续进行下一个载荷增量之前程序调整刚度矩阵以反映结构刚度的非线性变化。但是,纯粹的增量近似不可避免地要随着每一个载荷增量积累误差,导种结果最终失去平衡,如图1-3(a)所示。

.

(b)纯粹增量式解 (b)全牛顿-拉普森迭代求解(2个载荷增量)

图1-3 纯粹增量近似与牛顿-拉普森近似。

ANSYS程序通过使用牛顿-拉普森平衡迭代克服了这种困难,它迫使在每一个载荷增量的末端解达到平衡收敛(在某个容限范围内)。图1-3(b)描述了在单自由度非线性分析中牛顿-拉普森平衡迭代的使用。在每次求解前,NR方法估算出残差矢量,这个矢量是回复力(对应于单元应力的载荷)和所加载荷的差值,然后使用非平衡载荷进行线性求解,且核查收敛性。如果不满足收敛准则,重新估算非平衡载荷,修改刚度矩阵,获得新解。持续这种迭代过程直到问题收敛。 ANSYS程序提供了一系列命令来增强问题的收敛性,如自适应下降、线性搜索、自动载荷步长及二分等,可被激活来加强问题的收敛性,如果不能得到收敛,那么程序或者继续计算下一个载荷步或者终止(依据你的指示)。

对某些物理意义上不稳定系统的非线性静态分析,如果你仅仅使用NR方法,正切刚度矩阵可能变为降秩短阵,导致严重的收敛问题。这样的情况包括独立实体从固定表面分离的静态接触分析、

.

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4