高等数学第五章 习题解答

(5)

?1?15?u2u13dx令5?4x?u???du??(5?u2)du

34u2815?4xx11?1?1??5u?u3?? 8?3?16(6)

3?1342udu1令1?x?u??1?2?2(1?)du

0u?11?x?12u?1dx01?2(u?lnu?1)(7)

120?1?2ln2 td(?)??e22t2?21?10tet2?2dt???e01t2?2?1?e0?12

(8)

0d(x?1)?dx0 ??arctan(x?1)???2x2?2x?2??2(x?1)2?1?220??(9)

??2?2cosx?cosxdx?2?2cosxsin2xdx

03???2?20cosxsinxdx?2?2cosxdcosx

0?4??(cosx)3(10)

3220?4 31?x?10xedx???xde0?x??(xe)??edx??e00?x11?x?1?e?x10

?1?2?2 e12?(11)

??tsin?tdt????0?02?2??1???tdcos?t???tcos?t0??cos?tdt? 0?????2??2?1?2sin?t0???2?2??2

(12)

?414lnxdx?2?lnxd1xx?2(xlnx)?2?1441xdx x?8ln2?4x?41?8ln2?4

(13)

?20e2x????121?2x2xcosxdx??cosxde??(ecosx)2??2e2xsinxdx?

00202?? 6

???1?12112x12x????1??sinxde????esinx2??2e2xcosxdx

02?202440????2e2xcosxdx?01?(e?2) 5??1?cos2x1?131?2xdx??x??xdsin2x?

22?20?0?3?2(14)

??0(xsinx)dx??2?0121??31???(xsin2x)??2xsin2xdx???xdcos2x

06426400?3?33?1???1??????(xcos2x)0??cos2xdx????sin2x0???0??64?64464?3

(15)

?e1elnx dx???1lnx dx??lnx dx

e1ee111e?(xlnx)1??dx?(xlnx)1??1dx?2?1ee2 e5x3sin2xx3sin2xdx?0 3. 解:(1) ∵4为奇函数 ∴?242?5x?2x?1x?2x?1(2) 利用定积分的线性性质可得

原式??a?axcosxdx??5sinxdx??2dx

?a?aaa而前两个积分的被积函数都是奇数,故这两个定积分值均为0,

原式?4.证:令x??t,则

左边??a?a2dx?2?ldx?4a

?aa??bbf(?t)(?dt)??f(?t)dt??f(?x)dx?右边

?b?bbb5.证:令x?1,则 t左边???1dt1t2(1?2)tla1x??1x111xdt?dx=右边 22?1t?1x?1a?l16.证一:而

?a?laf(x)dx??f(x)dx??lf(x)dx

aa00?a?llf(x)dxx?t?l?a0f(t?l)dt??f(t)dt??f(x)dx

7

??a?laf(x)dx??f(x)dx??f(x)dx??f(x)dx

a00lal所以

?a?laf(x)dx的值与a无关。

证二:令F(a)?所以F(a)?7.证:令F(x)??axa?laf(x)dx,则F?(a)?f(a?l)?f(a)?0,

?0a?lf(x)dx是与a无关的常数。

?f(t)dt,则

xx00F(?x)??所以

?x0f(t)dtt??u?f(?u)(?du)??f(u)du?F(x)

?x0f(t)dt是偶函数。

8.证:?a?a0xf[?(x)]dxa?x?t?(a?t)f[?(a?t)](?dt)

a0??(a?t)f[?(a?t)]dt?a?f[?(a?t)]dt??tf[?(a?t)]dt

000aa?a?f[?(a?x)]dx??xf[?(a?x)]dx

00aa??xf[?(x)]dx??xf[?(a?x)]dx?a?f[?(a?x)]dx

000aaa即

?a0x{f[?(x)]?f[?(a?x)]}dx?a?f[?(a?x)]dx

0a

习 题 5.4

1. 答:不正确.因为

dx?0(1?x)2在[0,2]上存在无穷间断点x?1 , 故

2dx?0(1?x)2不能直接应用Newton?Leibniz公式计算,事实上,

2dx???0(1?x)222dxdx??0(1?x)2?1(1?x)2 11??2?lim????01??021dxdx?lim?lim(1?x)2??0??1??(1?x)2??0?1?x01?lim? ??01?x1???lim?(??01??1)?lim?(?1???01?)???

111limx?3?? 3x???33所以广义积分发散. 2.解:(1)

???11?3dx??xx43????1??8

即广义积分收敛于(2)?1. 3???1dx?2xx??1?2(limx???x?1)???

????1dx发散. x?ax(3)

???0e1?axedx??a????011(lime?ax?1)? x???aa 即广义积分收敛于

1. a(4)

???1dx?xx?1?21dx?xx?1???2dx

xx?11而

?212dxdx?lim??xx?1??01??x1?xx?1?tlim????0?2tdt

t(t2?1)?2lim?(arctant)1????0?2

?????2dx?xx?1x?1?t2?1dt??? ?2(arctant)?122t?1所以

?????1dx??

xx?1(5)

??1111?2dx?[?(x?1)]??

28(x?1)31e?3x??(6)

??01dx?[?e?3x3??]?01 3??11??(7)?dx??d(lnx)?ln(lnx)e???

eexlnxlnx11(8)令x?,则dx??2dt,于是

tt??1dt2??0??dxt?dtt?0?1?x2??1?x??????1?t21?t???0?1?t2??1?t??

??2tt?∴2

??0??????dxdxx?dx???? 2?2?2?001?x1?x1?x1?x1?x1?x???????????9

?从而

???01??? dx?arctgx?021?x2??0???dx。 ?41?x21?x????3.解:(1)

?60(x?4)dx =?(x?4)dx+?(x?4)dx

40?236?234?23=3(x?4)1634?3(x?4)11430?3?32?0?0?33?4?3(32?34)

dx(2) 令arcsinx?t,dt?1?x2x?于是

??20?1arcsinxx?1?x?x0dx?2?2tdt?t20??24

2a???2a4.解:左端?lim?1???e

x???x?a??右端????2xe?d??2x?????2?2xa??a?2xde2?2x2?2x??2??xe???a??a????a2xe?2xdx??

??2a2e?2a?2???a?2xxde?2x?2a2e?2a?2??xe?????ae?2xdx??

? ?2a?2a?1e ∴2a?2a?1e?2??2a

?2??2a?e?2a

解之a?0或a??1。

本章复习题A

1. 解:若x??a,b?时,f(x)?0,则?baf(x)dx在几何上表示由曲线y?f(x),直线

x?a,x?b及x轴所围成平面图形的面积. 若x??a,b?时,f(x)?0,则?bf(x)dx在几何

a上表示由曲线y?f(x),直线x?a,x?b及x轴所围平面图形面积的负值. (1)由下图(1)所示,??1xdx?(?A1)?A1?0.

1y 1 -1 A 1 A 1 y R 1 O - 1 ( 1 )

x A 2 ?R O R ( 2 )

x 10

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4