一次函数的实际应用
一、利用函数的解析式解决问题
1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系. (1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?
(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;
(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.
2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表: x (元) y (件) 15 25 20 20 25 15 … … 若日销售量y是销售价x的一次函数.
(1)求出日销售量y(件)与销售价x(元)的函数关系式; (2)求销售价定为30元时,每日的销售利润.
3.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题: (1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式; (2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?
4.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:
1
(注:“鞋码”是表示鞋子大小的一种号码) 鞋长(cm) 鞋码(号) 16 22 19 28 21 32 24 38 (1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上; (2)求x、y之间的函数关系式;
(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?
5.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m时,按2元/m计费;月用水量超过20m时,其中的20m仍按2元/m收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元. (1)分别求出0≤x≤20和x>20时y与x的函数表达式; (2)小明家第二季度交纳水费的情况如下:
月份 交费金额 四月份 30元 五月份 34元 六月份 42.6元 3
3
3
3
3
小明家这个季度共用水多少立方米?
6.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x的函数关系图象如图所示:
(1)根据图象,直接写出y1,y2关于x的函数关系式. (2)分别求出当x=3,x=5,x=8时,两车之间的距离.
(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.
(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.
7.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设
2
一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示. (1)求a的值;某户居民上月用水8吨,应收水费多少元; (2)求b的值,并写出当x>10时,y与x之间的函数关系式;
(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?
二、利用函数的增减性解决问题
8.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.
(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式. (2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?
每千克饮料 果汁含量 果汁 A B 0.5千克 0.2千克 0.3千克 0.4千克 甲 乙 9.某厂工人小王某月工作的部分信息如下:
信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天; 信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件. 生产产品件数与所用时间之间的关系见下表:
3