3.2 解一元一次方程(一)
──合并同类项
【学习目标】:会列一元一次方程解决实际问题,并会合并同类项解一元一次方程; 【重点难点】重点:会合并同类项解一元一次方程; 难点:会列一元一次方程解决实际问题;
【导学指导】 一、温故知新: 1.等式性质 1: 等式性质2: 2.解方程:(1)x-9=8; (2) 3x+1=4;
二、 自主探究:
1.问题1:某校三年级共购买计算机140台,去年购买数量是前年的2倍,?今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?
分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么去年购买___台,又知今年购买数量是去年的2倍,则今年购买了______(即____)台;
题目中的相等关系为:三年共购买计算机140台,即 前年购买量+去年购买量+今年购买量=140 列方程:_____________ 如何解这个方程呢?
根据分配律,x+2x+4x=(______)x=7x;
这样就可以把含x的项合并为一项,合并时要注意x的系数是1,不是0; 下面的框图表示了解这个方程的具体过程:
x+2x+4x=140 ↓合并同类项 7x=140 ↓系数化为1 x=20 由上可知,前年这个学校购买了20台计算机.
上面解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a、b是常数.
2.自己试着完成
例1 解方程 (1)2x?
52x?6?8 (2)7x?2.5x?3x?1.5x??15?4?6?3;
例2:有一列数,按一定规律排列成1,-3,9,-27,81,-243……其中某三个相邻数的和是-1701,这三个数各是多少?引导学生观察这列数有什么规律?
(从符号和绝对值两方面)
学生讨论后发现:后面一个数是前一个数的-3倍。 师生共同分析,完成解答过程:
解:设这三个相邻数中的第一个数为x,则第2个数为-3x,第3个数为-3×(-3x)=9x 根据这三个数的和是-1710,得 x-3x+9x=-1710 合并同类项,得 7x=-1710 系数化为1,得 x=-243
所以-3x=729 9x=-2187
答:这三个数是-243、729、-2187
引导学生讨论以上列方程解决实际问题的关键。 学生讨论、分析:探索规律,找出相等关系
如有学生提出不同的设未知数的方法,同样给予鼓励。
【当堂训练】
1.课本第88页练习;
2.某班学生共60人,外出参加种树活动,根据任务的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.
思路:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60?人分成___份,甲组人数占___份,乙组人数占___份,丙组人数占___份,如果知道每一份是多少,?那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人.
关键:本题中相等关系是什么? _____________________________________. 解:设每一份为x人,则甲组人数为__人,乙组人数为___人,丙组为___人,?列方程: _______________ 合并,得________ 系数化为1,得x=___
所以2x=____,3x=_____,5x=______
答:甲组_____人,乙组___人,丙组______人.
请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,?且这三组人数之和是否等于60;
3.三个连续偶数的和是30,求这三个偶数。 【课堂小结】:
列一元一次方程解决实际问题的一般步骤中,找等量关系是关键也是难点,本节课的两个问题的相等关系都是:“各部分量的和=总量”;这是一个基本的相等关系;
合并就是把类型相同的项系数相加合并为一项,也就是反用乘法分配律,合并时,注意x或-x的系数分别是1,-1,而不是0;
【拓展训练】
1.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?
解:设每份为_____个,则黑色皮块有_____个,白色皮块有_______个 列方程 _________ 合并,得_________
系数化为1,得 x=_____
黑色皮块为___×___=____(个),白色皮块有____×___=____(个)
2.某学生读一本书,第一天读了全书的
11多2页,第二天读了全书的少1?页,?还剩2332页没读,问全书共有多少页?(设未知数,列方程,不求解)
解:设全书共有____页,那么第一天读了( )页,第二天读了( )页.
本问题的相等关系是:_____________+_______________+_____________=全书页数; 列方程:_______________________。
3.在某月内,李老师要参加三天的学习培训,现在知道这三天的日期的数字之和是39; (1)培训时间是连续的三天,你知道这几天分别是当月的哪几号吗? (2)若培训时间是连续三周的周六,那这几天又分是当月的哪几号? 学生练习,教师点评。
【总结反思】: