½ÄÏ´óѧÏÖ´úÔ¶³Ì½ÌÓý µÚÈý½×¶ÎÁ·Ï°Ìâ
Ò»£®Ñ¡ÔñÌâ(ÿÌâ4·Ö£¬¹²20·Ö)
1. Éèf(y?x,)?y?x, Ôòf(x,y)? ( D ).
xy22y2(1?x)y2(1?x)x2(1?x)x2(1?y)(a) (b) (c) (d)
1?x1?x1?x1?y2. É躯Êý z?f(x,y) ÔÚµã (x0,y0) µÄijÁÚÓòÄÚÓж¨Òå, ÇÒ´æÔÚÒ»½×Æ«µ¼Êý, Ôò
?z?yx?x0y?y0?( B )
(a) lim?y?0f(x0??x,y0??y)?f(x0,y0)f(x0,y0??y)?f(x0,y0) (b) lim
?y?0?y?yf(y0??y)?f(y0)f(x0??x,)?f(x0,y0) (d) lim
?y?0?y?y22(c) lim?y?03. ÈôDÊÇƽÃæÇøÓò{1?x?y?9}, Ôò
??dxdy=( B )
D(a) 7? (b) 8? (c) 9? (d) 10?
4. ÏÂÃæ¸÷΢·Ö·½³ÌÖÐΪһ½×ÏßÐÔ·½³ÌµÄÊÇ ( B )
32(a) xy??y?2 (b) y??2xy?cosx (c) yy??2x (d) y??xy?1
5. ΢·Ö·½³Ì x?y?(y?x)y??0 µÄͨ½âÊÇ ( D ).
y1y?ln(x2?y2)?C (b) arctan?ln(x2?y2)?C x2xyy12222(c) arctan?ln(x?y)?C (d) arctan?ln(x?y)?C
xx2(a) arctan
¶þ.Ìî¿ÕÌâ(ÿÌâ4·Ö£¬¹²28·Ö)
1
6. Éè z?xy3, Ôò
?z?xx?1y?3?____
______
7. Éè z?cot(y2?xy), Ôò
?z?____?y_______ ?2z8. Éèz?e?xsiny, Ôò=___
?x?y9.
Éè
yx________ z?ln(3y?2x)?exy2, Ôò
dz=____
elnx_________.
10. ½»»»¶þ´Î»ý·Ö´ÎÐò I?dx1??0f(x,y)dy=_______
_______. d4u?u?3v µÄ×Ô±äÁ¿Îª___11. ΢·Ö·½³Ì 4dv___4____ 12. ΢·Ö·½³Ì
___, δ֪º¯ÊýΪ________, ·½³ÌµÄ½×ÊýΪ
dy1??0 µÄͨ½âÊÇ___dxxy_______ Èý. ½â´ðÌâ (Âú·Ö52·Ö)
z2z?z(x,y)e?xy?cos(x?z)?0 ËùÈ·¶¨µÄÒþº¯Êý, Çó dz 13. Éè ÊÇÓÉ·½³Ì
2
14. Çóº¯Êý z?xy(3?x?y),(x?0,y?0)µÄ¼«Öµ¡£
2xy??dxdyD15. ¼ÆËã
, ÆäÖÐDÊÇÓÉÇúÏß xy?1,y?x,y?3 Χ³ÉµÄƽÃæÇøÓò¡£
2
16. ¼ÆËã
x??eD2?y2dxdy222?x?y?5 È·¶¨¡£ D, ÆäÖÐÊÇÓÉ
dyy?217. Çó΢·Ö·½³Ì dxy?x µÄͨ½â¡£
dyy??cosxdxx18. Çó΢·Ö·½³Ì µÄͨ½â¡£
y()?1(y?sinx)dx?tanxdy?0619. Çó΢·Ö·½³Ì Âú×ã³õʼÌõ¼þ µÄ½â¡£
3
?