高等数学Ⅱ(本科类)第3阶段练习题及答案

江南大学现代远程教育 第三阶段练习题

一.选择题(每题4分,共20分)

1. 设f(y?x,)?y?x, 则f(x,y)? ( D ).

xy22y2(1?x)y2(1?x)x2(1?x)x2(1?y)(a) (b) (c) (d)

1?x1?x1?x1?y2. 设函数 z?f(x,y) 在点 (x0,y0) 的某邻域内有定义, 且存在一阶偏导数, 则

?z?yx?x0y?y0?( B )

(a) lim?y?0f(x0??x,y0??y)?f(x0,y0)f(x0,y0??y)?f(x0,y0) (b) lim

?y?0?y?yf(y0??y)?f(y0)f(x0??x,)?f(x0,y0) (d) lim

?y?0?y?y22(c) lim?y?03. 若D是平面区域{1?x?y?9}, 则

??dxdy=( B )

D(a) 7? (b) 8? (c) 9? (d) 10?

4. 下面各微分方程中为一阶线性方程的是 ( B )

32(a) xy??y?2 (b) y??2xy?cosx (c) yy??2x (d) y??xy?1

5. 微分方程 x?y?(y?x)y??0 的通解是 ( D ).

y1y?ln(x2?y2)?C (b) arctan?ln(x2?y2)?C x2xyy12222(c) arctan?ln(x?y)?C (d) arctan?ln(x?y)?C

xx2(a) arctan

二.填空题(每题4分,共28分)

1

6. 设 z?xy3, 则

?z?xx?1y?3?____

______

7. 设 z?cot(y2?xy), 则

?z?____?y_______ ?2z8. 设z?e?xsiny, 则=___

?x?y9.

yx________ z?ln(3y?2x)?exy2, 则

dz=____

elnx_________.

10. 交换二次积分次序 I?dx1??0f(x,y)dy=_______

_______. d4u?u?3v 的自变量为___11. 微分方程 4dv___4____ 12. 微分方程

___, 未知函数为________, 方程的阶数为

dy1??0 的通解是___dxxy_______ 三. 解答题 (满分52分)

z2z?z(x,y)e?xy?cos(x?z)?0 所确定的隐函数, 求 dz 13. 设 是由方程

2

14. 求函数 z?xy(3?x?y),(x?0,y?0)的极值。

2xy??dxdyD15. 计算

, 其中D是由曲线 xy?1,y?x,y?3 围成的平面区域。

2

16. 计算

x??eD2?y2dxdy222?x?y?5 确定。 D, 其中是由

dyy?217. 求微分方程 dxy?x 的通解。

dyy??cosxdxx18. 求微分方程 的通解。

y()?1(y?sinx)dx?tanxdy?0619. 求微分方程 满足初始条件 的解。

3

?

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4