概率论课后习题解答

一、习题详解:

1.1 写出下列随机试验的样本空间:

(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故?1??5,6,7,??; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:?2??2,3,4,?11,12?; (3) 观察某医院一天内前来就诊的人数;

解:医院一天内前来就诊的人数理论上可以从0到无穷,所以?3??0,1,2,?(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ?4??i,j?1?i?j?5?; (5) 检查两件产品是否合格;

解:用0 表示合格, 1 表示不合格,则?5???0,0?,?0,1?,?1,0?,?1,1??;

(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ?6??x,y?T1?x?y?T2?;

???;

(7) 在单位圆内任取两点, 观察这两点的距离; 解:?7?x0?x?2?;

(8) 在长为l的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:?8??x,y?x?0,y?0,x?y?l?;

1.2 设A,B,C 为三事件, 用A;B;C 的运算关系表示下列各事件: (1) A 与B 都发生, 但C 不发生; ABC;

(2) A 发生, 且B 与C 至少有一个发生;A(B?C); (3) A,B,C 中至少有一个发生; A?B?C; (4) A,B,C 中恰有一个发生;ABC?ABC?ABC; (5) A,B,C 中至少有两个发生; AB?AC?BC;

(6) A,B,C 中至多有一个发生;AB?AC?BC; (7) A;B;C 中至多有两个发生;ABC; (8) A,B,C 中恰有两个发生.ABC?ABC?ABC ; 注意:此类题目答案一般不唯一,有不同的表示方式。

??

1.3 设样本空间??x0?x?2?, 事件A=x0.5?x?1?,B?x0.8?x?1.6? 具体写出下列各事件:

(1) AB; (2) A?B ; (3) A?B; (4) A?B (1)AB?x0.8?x?1?; (2) A?B=x0.5?x?0.8?;

(3) A?B=x0?x?0.5?0.8?x?2?; (4) A?B=x0?x?0.5?1.6?x?2?

1.4 用作图法说明下列各命题成立: 略

1.5 用作图法说明下列各命题成立: 略

1.6 按从小到大次序排列P(A),P(A?B),P(AB),P(A)?P(B), 并说明理由.

解:由于AB?A,A?(A?B),故P(AB)?P(A)?P(A?B),而由加法公式,有:

???????P(A?B)?P(A)?P(B)

1.7 若W 表示昆虫出现残翅, E 表示有退化性眼睛, 且P(W) = 0.125; P(E) = 0.075, P(WE) = 0.025, 求下列事件的概率: (1) 昆虫出现残翅或退化性眼睛;

(2) 昆虫出现残翅, 但没有退化性眼睛; (3) 昆虫未出现残翅, 也无退化性眼睛.

解:(1) 昆虫出现残翅或退化性眼睛对应事件概率为:

P(W?E)?P(W)?P(E)?P(WE)?0.175

(2) 由于事件W可以分解为互斥事件WE,WE,昆虫出现残翅, 但没有退化性眼睛对应事件 概率为:P(WE)?P(W)?P(WE)?0.1

(3) 昆虫未出现残翅, 也无退化性眼睛的概率为:P(WE)?1?P(W?E)?0.825. 1.8 设A 与B 是两个事件, P(A) = 0.6; P(B) = 0.8。试问: (1) 在什么条件下P(AB) 取到最大值? 最大值是多少? (2) 在什么条件下P(AB) 取到最小值? 最小值是多少?

解:(1) 由于AB?A,AB?B,故P(AB)?P(A),P(AB)?P(B),显然当A?B时P(AB)

取到最大值。 最大值是0.6.

(2) 由于P(AB)?P(A)?P(B)?P(A?B)。显然当P(A?B)?1时P(AB) 取到最小值,最小值是0.4.

1.9 设P(A) = 0.2, P(B) = 0.3, P(C) = 0.5, P(AB) = 0, P(AC) = 0.1, P(BC) = 0.2, 求事件 A,B,C 中至少有一个发生的概率.

解:因为 P(AB) = 0,故 P(ABC) = 0.A,B,C至少有一个发生的概率为:

P(A?B?C)?P(A)?P(B)?P(C)?P(AB)?P(BC)?P(AC)?P(ABC)?0.7

1.10 计算下列各题:

(1) 设P(A) = 0.5, P(B) = 0.3, P(A?B) = 0.6, 求P(AB); (2) 设P(A) = 0.8, P(A?B) = 0.4, 求P(AB); (3) 设P(AB) = P(A B); P(A) = 0.3, 求P(B)。 解:

(1)通过作图,可以知道,P(AB)?P(A?B)?P(B)?0.3 (2)P(AB)?1?P(AB)?1?(P(A)?P(A?B))?0.6

(3)由于P(AB)?P(AB)?1?P(A?B)?1?(P(A)?P(B)?P(AB)) ?1?P(A)?P(B)?P(AB)P(B)?1?P(A)?0.7

1.11 把3个球随机地放入4个杯子中,求有球最多的杯子中球数是1,2,3 概率各为多少? 解:用Ai表示事件“杯中球的最大个数为i个” i=1,2,3。三只球放入四只杯中,放法有

4?4?4?64种,每种放法等可能。

对事件A1:必须三球放入三杯中,每杯只放一球。放法4×3×2种,故P(A1)?

(选排列:好比3个球在4个位置做排列)。

对事件A3:必须三球都放入一杯中。放法有4种。(只需从4个杯中选1个杯子,放入此3个球,选法有4种),故P(A3)?3 81319?。P(A2)?1??

1681616

1.12 掷一颗匀称的骰子两次, 求前后两次出现的点数之和为3; 4; 5 的概率各是多少?

解:此题为典型的古典概型,掷一颗匀称的骰子两次基本事件总数为36。.出现点数和为“3”对应两个基本事件(1,2),(2,1)。故前后两次出现的点数之和为3的概率为

1。 18

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4