高级计量经济学复习精要
一、简答题(10分×2):
(一)多重共线性问题:(主要看修正方法)
1、多重共线性是指线性回归模型中的解释变量之间由于存在精确相关关系或高度相关关系而使模型估计失真或难以估计准确。完全共线性的情况并不多见,一般出现的是在一定程度上的共线性,即近似共线性。
2、产生原因主要有3各方面:(1)经济变量相关的共同趋势;(2)滞后变量的引入;(3)样本资料的限制。
3、造成的后果:(1)完全共线性下参数估计量不存在;(2)近似共线性下OLS估计量非有效;(3)参数估计量经济含义不合理;(4)变量的显著性检验失去意义;(5)模型的预测功能失效。
2
4、识别方法:(1)经验识别:对模型估计后,R极高,多个变量不显著,出现与理论预期相悖的情况,有理由怀疑存在多重共线性。(2)相关系数法:计算变量间两两相关系数。只要其中一个大等于0.6或0.7,则表明可能存在严重的共线性。(3)膨胀因子法:计算每个解释变量的VIF,若某一个VIF≥10, 则表明存在严重的共线性。
5、修正方法:(※※※)根据潘老师讲课内容进行整理
共线性的修正方法有很多,按照优劣程度排序,主要有五种方法:
方法1:扩充样本以减弱共线性。主要通过增加自由度来提高精度,如将时序数据或截面数据变为面板数据,从而将一维数据变为二维。
评价:这种方法最理想,但存在的缺点是:①效果不定;②不可行。 方法2:工具变量法(IV)。主要通过工具变量,运用两阶段最小二乘完成。
评价:这种方法目前最受欢迎,高质量的期刊论文通常都采用该方法。缺点是:①由于相关关系具有传导性,工具变量S很难找;②用S替代X,有时经济正当性不足。
方法3:变量变换法。可以通过对数变换、绝对转相对和方程变换进行变量变换。 评价:这种方法最简单易行,但存在的缺点是:①简单相关系数描述的是线性关系,而对数是非线性化过程;②功效不足;③不是所有变量都能用来做变换,必须有明确的经济学指代。
方法4:逐步回归法。主要是通过降维减少变量来减弱共线性。
评价:这种方法要慎用,最大的缺点是:虽然能很好地解决共线性问题,但是却引发了更严重的内生性问题。
方法5:主成份分析法或因子分析法。具有降维的作用,主要用于多指标评价。
评价:该方法很好地消除了共线性。但这种方法要慎用,最大的缺点是:经济含义伤害过大。
(二)内生性问题
1、内生性是指:模型中的解释变量与扰动项相关。通常我们做古典假设①E(?)=0,var(
?i为白噪声,
?i)=?2,cov(?i?j)=0;②X是非随机变量(微观可以通过固定抽样得到
解决,宏观则不可),则cov(X,?)=0成立。但是当cov(X, ?)≠0时上述假设便不再成立,我们称之为内生性,进而导致OLS失效,是非一致性的。
2、内生性产生的原因:①X与Y 存在双向因果,即X影响Y的同时,Y 也影响X;如金融发展与经济增长;外商直接投资FDI与经济增长;犯罪率与警备投入。②模型遗漏重要解释变量。无论是缺失重要解释变量导致,还是无法获取数据导致,被遗漏的重要变量进
1
入了残差项,如果与其他解释变量相关,就会出现cov(Ut,Xt)≠0,也就是内生性问题。③度量误差:由于关键变量的度量上存在误差,使其与真实值之间存在偏差,这种偏差可能会成为回归误差的一部分,从而导致内生性问题。(潘老师上课没讲③)
3、解决方法:
针对双向因果产生的内生性问题,比较容易解决,通过联立方程组即可。 难处理的是遗漏重要解释变量的情况,通常采用的方法有: ①工具变量法(IV):就是找到一个变量和内生化变量相关,但是和残差项不相关。通常采用2SLS方法进行回归。这种方法是找到影响内生变量的外生变量,连同其他已有的外生变量一起回归,得到内生变量的估计值,以此作为IV,放到原来的回归方程中进行回归。
(假如我们考察一个工资决定模型salary??0??1educ??2abli?ui
?i 首先,用Probit模型估计p(work)?f(educ,abli),得到p?i?vi进行估计) 其次,构建模型salary??0??1educ??2abli??p②得分匹配与DID模型(双差分模型):思想是按照一定的标准,找到与样本match的控制组。在假设外在冲击同时影响两个组别的情况下,做差来剔除掉外界冲击的影响。
第一步,该方法关键在于得分匹配的确定,配对样本的选择原则是保证两个样本随时间自然变化的部分是相同的,一般根据距离最近作为配对的样本点的方法进行匹配得分。
第二步是估计方法,采用双重差分法(DID)。在假设外在冲击同时影响两个组别的情况下,做差来剔除掉外界冲击的影响。
(在样本选择上,控制不可观测变量,然后利用双差分模型进行估计 Eg:salary??0??1educ??2abli?ui
(1)样本抽取时,将ablity相等或相近的观测值进行配对(匹配标准IQ/双胞胎) (2)用双差分模型(DID)进行参数估计
ln(salary得分组-salary对照组)??0??1ln(educ得分组-educ对照组)+vi
? 不足:样本要求非常大,尤其是用多重标准进行匹?1,等价于原模型中的?估计出?1配时,样本要求更大。) 潘老师举得例子
二、虚拟变量:(20分)(给出实际经济问题,根据目标设计虚拟变量,写出模
型。考察一种群体异质。完整考察如何设计,如何运用到模型中。)
注意事项:1、模型设计时一定要有截距项,虚拟变量引入原则一定要满足m-1原则。m为互斥类型的定性因素。2、要掌握虚拟变量引入模型的三种方法,即加法模型、乘法模型和既加又乘模型。
1、举例说明如何引进加法模式和乘法模式建立虚拟变量模型。
答案:设Y为个人消费支出;X表示可支配收入,定义
如果设定模型为
2
此时模型仅影响截距项,差异表现为截距项的和,因此也称为加法模型。 如果设定模型为
此时模型不仅影响截距项,而且还影响斜率项。差异表现为截距和斜率的双重变化,因此也称为乘法模型。
2、考虑下面的模型:
其中,Y表示大
学教师的年薪收入,X表示工龄。为了研究大学教师的年薪是否受到性别(男、女)、学历(本科、硕士、博士)的影响。按照下面的方式引入虚拟变量:
3、考虑下面的模型:
其中,Y表示大学教
师的年薪收入,X表示工龄。为了研究大学教师的年薪是否受到性别、学历的影响。按照下面的方式引入虚拟变量:(10分)
1. 基准类是什么?
2. 解释各系数所代表的含义,并预期各系数的符号。 3. 若B4>B3,你得出什么结论? 答案:1. 基准类是本科学历的女教师。
2. B0表示刚参加工作的本科学历女教师的收入,所以B0的符号为正。
B1表示在其他条件不变时,工龄变化一个单位所引起的收入的变化,所以
B1的符号为正。
3