第十章部分课后习题参考答案
4.判断下列集合对所给的二元运算是否封闭: (1) 整数集合Z和普通的减法运算。
封闭,不满足交换律和结合律,无零元和单位元 (2) 非零整数集合
普通的除法运算。不封闭
(R)和矩阵加法及乘法运算,其中n2。
(3) 全体n?n实矩阵集合
封闭 均满足交换律,结合律,乘法对加法满足分配律; 加法单位元是零矩阵,无零元;
乘法单位元是单位矩阵,零元是零矩阵;
(4)全体n?n实可逆矩阵集合关于矩阵加法及乘法运算,其中n2。不封闭 (5)正实数集合
和运算,其中运算定义为:
不封闭 因为 1?1?1?1?1?1??1?R? (6)n关于普通的加法和乘法运算。
封闭,均满足交换律,结合律,乘法对加法满足分配律 加法单位元是0,无零元;
乘法无单位元(n?1),零元是0;n?1单位元是1 (7)A = {a1,a2,?,an} n
运算定义如下:
封闭 不满足交换律,满足结合律, (8)S =
关于普通的加法和乘法运算。
封闭 均满足交换律,结合律,乘法对加法满足分配律 (9)S = {0,1},S是关于普通的加法和乘法运算。 加法不封闭,乘法封闭;乘法满足交换律,结合律 (10)S =
,S关于普通的加法和乘法运算。
加法不封闭,乘法封闭,乘法满足交换律,结合律
5.对于上题中封闭的二元运算判断是否适合交换律,结合律,分配律。 见上题
1
7.设 * 为Z?上的二元运算?x,y?Z?,
X * Y = min ( x,y ),即x和y之中较小的数.
(1)求4 * 6,7 * 3。 4, 3
(2)* 在Z上是否适合交换律,结合律,和幂等律? 满足交换律,结合律,和幂等律
(3)求*运算的单位元,零元及Z?中所有可逆元素的逆元。 单位元无,零元1, 所有元素无逆元
8.S?Q?Q Q为有理数集,*为S上的二元运算,,
< a,b >*
(1)*运算在S上是否可交换,可结合?是否为幂等的? 不可交换:
可结合:(*
(2)*运算是否有单位元,零元? 如果有请指出,并求S中所有可逆元素的逆元。 设是单位元,
所以当x?0时,?x,y??1?1y,? xx?
10.令S={a,b},S上有四个运算:*,
分别有表10.8确定。
2
(a) (b) (c) (d)
(1)这4个运算中哪些运算满足交换律,结合律,幂等律? (a) 交换律,结合律,幂等律都满足, 零元为a,没有单位元; (b)满足交换律和结合律,不满足幂等律,单位元为a,没有零元
a?1?a,b?1?b
(c)满足交换律,不满足幂等律,不满足结合律 a?(b?b)?a?a?b, a?(b?b)?(a?b)?b 没有单位元, 没有零元
(d) 不满足交换律,满足结合律和幂等律 没有单位元, 没有零元
(2)求每个运算的单位元,零元以及每一个可逆元素的逆元。 见上
(a?b)?b?a?b?a
16.设V=〈 N,+ ,〉,其中+ ,分别代表普通加法与乘法,对下面给定的每个集合确定它是否构成V的子代数,为什么?
(1)S1=(2)S2=
是
不是 加法不封闭
(3)S3 = {-1,0,1} 不是,加法不封闭
第十一章部分课后习题参考答案
8.设S={0,1,2,3},
为模4乘法,即
y=(xy)mod 4
\?x,y∈S, x
问〈S,
〉是否构成群?为什么?
y=(xy)mod 4?S,
是S上的代数运算。
解:(1) ?x,y∈S, x
(2) ?x,y,z∈S,设xy=4k+r 0?r?3
(x
y)z =((xy)mod 4)z=rz=(rz)mod 4
3