中考数学专题复习:方案设计型问题

中考数学专题复习——设计型问题

1.在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是 .

1.62或213 2.(2013?大连)如图,为了测量河的宽度AB,测量人员在高21m的建筑物CD的顶端D处测得河岸B处的俯角为45°,测得河对岸A处的俯角为30°(A、B、C在同一条直线上),则河的宽度AB约为 m(精确到0.1m).(参考数据:2≈1.41,

3≈1.73)

2.15.3 3.(2013?张家界)如图,在方格纸上,以格点连线为边的三角形叫做格点三角形,请按要求完成下列操作:先将格点△ABC绕A点逆时针旋转90°得到△A1B1C1,再将△A1B1C1沿直线B1C1作轴反射得到△A2B2C2.

3.解:如图所示:

4.(2013?荆州)如图,是一个4×4的正方形网格,每个小正方形的边长为1.请你在网格中以左上角的三角形为基本图形,通过平移、对称或旋转变换,设计一个精美图案,使其满

1

足:

①既是轴对称图形,又是以点O为对称中心的中心对称图形; ②所作图案用阴影标识,且阴影部分面积为4.

4.解:如图所示:答案不唯一.

5.(2013?呼和浩特)如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号)

5.解:过C作CD⊥AB于D,

在Rt△ACD中, ∵AC=10,∠A=30°, ∴DC=ACsin30°=5, AD=ACcos30°=53, 在Rt△BCD中, ∵∠B=45°,

2

∴BD=CD=5,BC=52,

则用AC+BC-(AD+BD)=10+52-(53+5)=5+52-53(千米). 答:汽车从A地到B地比原来少走(5+52-53)千米.

6.(2013?重庆)如图,在边长为1的小正方形组成的10×10网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A、B、C、D分别在网格的格点上.

(1)请你在所给的网格中画出四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于直线l对称,其中点A′、B′、C′、D′分别是点A、B、C、D的对称点;(2)在(1)的条件下,结合你所画的图形,直接写出线段A′B′的长度.

6.解:(1)所作图形如下:

(2)A'B'=1?3?10.

7.(2013?天门)某商场为方便顾客使用购物车,准备将滚动电梯的坡面坡度由1:1.8改为1:2.4(如图).如果改动后电梯的坡面长为13米,求改动后电梯水平宽度增加部分BC的长.

22 3

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4