【20套精选试卷合集】广东省重点名校2019-2020学年高考数学模拟试卷含答案

x2??fx?2?x(文)解:(1)函数的定义域是R,若是关于1可线性分解,

则定义域内存在实数

x0,使得f?x0?1??f?x0??f?1?.

2x?1x2????????hx?fx?1?fx?f1???2?x?1?2?x?2?1 构造函数

?22x?1?x?1.

0,1∵h?0???1,h?1??2且h?x?在??上是连续的,

??∴h?x?在?即存在

0,1?上至少存在一个零点. ,使

x0??0,1?f?x0?1??f?x0??f?1?.

x2??fx?2?x另解:函数关于1可线性分解,

2x?1??????fx?1?fx?f1??2?x?1?2x?x2?3. 由,得

即2??2x?2.

作函数g?x??2与h?x???2x?2的图象,

xx由图象可以看出,存在即

x0?R,使2x??2x?2,

f?x0?1??f?x0??f?1?)成立.

(2)g?x?的定义域为?0,???. 由已知,存在

x0?0,使g?x0?a??g?x0??g?a?.

2????lnx?a?ax?a?1?lnx?ax?1?lna?a?1. 0000即

整理,得

ln?x0?a??lnx0?lna?1,即ln?x0?a??ln(ax0e).

x0?aae?1.

a?x0?ax0e,所以

x0?由

a1?0a?ae?1e. 且a?0,得

?1??,????. ∴a的取值范围是?e高考模拟数学试卷

一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合

题目要求的.

(1?i)21.复数z?(i为虚数单位)的虚部为( )

1?i A.1 B. -1 C. ?1 D. 0sj.fjjy.org2.已知全集U=R,设函数y=lg(x-1)的定义域为集合A,函数y=x2?2的值域为集合B,则A∩(CUB)= ( ) A.[1,2] B.[1, 2) C.(1,2] D.(1,2)

3. 设?、?为两个不同的平面,且m??,n??,有两个命题:p:若m//n,m、n为两条不同的直线,则?//?;q:若m??,则???;那么( )

A.“p或q”是假命题 B.“p且q”是真命题 C.“非p或q” 是假命题 D.“非p且q”是真命题 4.在应用数学归纳法证明凸n变形的对角线为

1n(n?3)条时,第一步检验n等于( ) 2 A. 1 B.2 C.3 D.0

5.函数y?loga(x?3)?1(a?0,a?1)的图象恒过定点A,若点A在直线mx?ny?1?0 上,其中mn?0,则

12?的最小值为( ) mn1 4A.8 B.4 C.1 D.

uuuruuuruuuruuur5?,6.已知OA?1,OB?3,?AOB?点C在∠AOB外且OB?OC?0.设实数m,n满 6uuuruuuruuurm,足OC?mOA?nOB则等于( )

nA.2 B.3 C.-2 D.-3 7. 一个几何体的三视图如图所示,其中正视图是一个正三角形,则这 个几何体的外接球的表面积为( )

8π16π

A.23π B. C.43 D.

338.若将函数y=tan?ωx+

?

?

>>闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧湱鈧懓瀚崳纾嬨亹閹烘垹鍊炲銈嗗笒椤︿即寮查鍫熷仭婵犲﹤鍟扮粻缁橆殽閻愭潙鐏村┑顔瑰亾闂侀潧鐗嗛幊鎰邦敊婵犲倵鏀介幒鎶藉磹閹版澘纾婚柟鎯у濡垶鏌熼鍡楃灱閸氬姊洪崫鍕効缂傚秳绶氶悰顕€宕堕澶嬫櫖闂佹寧绻傚Λ宀勫箰閸涱喚绡€闁汇垽娼ф禒婊勪繆椤栨熬鏀荤紒鍌氱Т楗即宕煎┑鍫О闂備線鈧偛鑻晶顔姐亜椤忓嫬鏆e┑鈥崇埣瀹曞崬螖閳ь剝銆栫紓鍌氬€搁崐鍝ョ矓閺夋嚦娑樜旈埀顒勬偝婵犳艾閿ゆ俊銈勭娴滄粓姊虹粙璺ㄧ闁汇劎鍏橀獮蹇涙惞閸︻厾锛滅紓鍌欓檷閸ㄥ綊鐛弽顓熺厵闁告劘灏欑粻娲煏閸ャ劌濮屾い锕€顕槐鎺撴綇閵娿儲璇為梺璇″枓閺呯姴鐣峰鈧幊鐘活敄閹稿骸浜濈紓鍌氬€搁崐椋庢閿熺姴绐楅柡宥庡幗閸嬪鏌熼幆褏锛嶉柡鍡畵閺岀喖鎮滃鍡樼暦闂佺ǹ锕﹂崗姗€骞冨Δ鍛仺闁谎嗩嚙濠€閬嶅极椤曗偓楠炲棜顦柡鈧禒瀣厽婵☆垵娅f禒娑㈡煛閸″繑娅呴柍瑙勫灴椤㈡瑧鍠婇崡鐐搭啀闂備胶鎳撶粻宥夊垂绾懐浜藉┑鐐存尰閸戝綊宕归幎钘夌劦妞ゆ帒鍟悡鎰版煏閸パ冾伃鐎殿喗娼欒灃闁逞屽墯缁傚秵銈i崘鈹炬嫼闂佸憡绻傜€氼噣鎮炵捄銊х<闁哄被鍎抽悾鐑橆殽閻愬弶顥㈢€殿噮鍣e畷濂割敃閿濆棙鐝┑鐘垫暩閸嬬偤宕归崼鏇熸櫇闁冲搫鍊搁閬嶆煥閻曞倹瀚�<<
12@gma联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4