Óî¹â½ÌÓý ³õ¶þÊýѧ
Òòʽ·Ö½â£¨Ò»£©
¡ª¡ªÌáÈ¡¹«ÒòʽÓëÔËÓù«Ê½·¨
¡¾Ñ§Ï°Ä¿±ê¡¿£¨1£©ÈÃѧÉúÁ˽âʲôÊÇÒòʽ·Ö½â£»
£¨2£©Òòʽ·Ö½âÓëÕûʽµÄÇø±ð£» £¨3£©ÌṫÒòʽÓ빫ʽ·¨µÄ¼¼ÇÉ¡£
¡¾ÖªÊ¶Òªµã¡¿
1¡¢ÌáÈ¡¹«Òòʽ£ºÐÍÈçma?mb?mc?m(a?b?c)£¬°Ñ¶àÏîʽÖеĹ«¹²²¿·ÖÌáÈ¡³öÀ´¡£
¡îÌṫÒòʽ·Ö½âÒòÊ½ÒªÌØ±ð×¢Ò⣺
£¨1£©Èç¹û¶àÏîʽµÄÊ×ÏîϵÊýÊǸºµÄ£¬ÌṫÒòʽʱҪ½«¸ººÅÌá³ö£¬Ê¹À¨ºÅÄÚµÚÒ»ÏîµÄϵÊýÊÇÕýµÄ£¬
²¢ÇÒ×¢ÒâÀ¨ºÅÄÚÆäËü¸÷ÏîÒª±äºÅ¡£
£¨2£©Èç¹û¹«ÒòʽÊǶàÏîʽʱ£¬Ö»Òª°ÑÕâ¸ö¶àÏîʽÕûÌå¿´³ÉÒ»¸ö×Öĸ£¬°´ÕÕÌá×Öĸ¹«ÒòʽµÄ°ì·¨Ìá³ö¡£
£¨3£©ÓÐʱҪ¶Ô¶àÏîʽµÄÏî½øÐÐÊʵ±µÄºãµÈ±äÐÎÖ®ºó£¨È罫a+b-c±ä³É-£¨c-a-b£©²ÅÄÜÌṫÒòʽ£¬
ÕâÊ±ÒªÌØ±ð×¢Òâ¸÷ÏîµÄ·ûºÅ£©¡£
£¨4£©ÌṫÒòʽºó£¬Ê£ÏµÄÁíÒ»ÒòʽÐë¼ÓÒÔÕûÀí£¬²»ÄÜÔÚÀ¨ºÅÖл¹º¬ÓÐÀ¨ºÅ£¬²¢ÇÒÓй«ÒòʽµÄ»¹Ó¦¼ÌÐøÌá¡£
£¨5£©·Ö½âÒòʽʱ£¬µ¥ÏîʽÒòʽӦдÔÚ¶àÏîʽÒòʽµÄÇ°Ãæ¡£
2¡¢ÔËÓù«Ê½·¨£º°ÑÎÒÃÇѧ¹ýµÄ¼¸¸ö³Ë·¨¹«Ê½·´¹ýÀ´Ð´¾Í±ä³ÉÁËÒòʽ·Ö½âµÄÐÎʽ£º a2?b2??a?b??a?b?£» a2?2ab?b2??a?b?¡£
2ƽ·½²î¹«Ê½µÄÌØµãÊÇ£º(1) ×ó²àΪÁ½Ï(2) Á½Ïî¶¼ÊÇÆ½·½Ï(3) Á½ÏîµÄ·ûºÅÏà·´¡£
Íêȫƽ·½¹«Ê½ÌصãÊÇ: (1) ×ó²àΪÈýÏ(2) Êס¢Ä©Á½ÏîÊÇÆ½·½Ï²¢ÇÒÊ×Ä©Á½ÏîµÄ·ûºÅÏàͬ£»
(3) ÖмäÏîÊÇÊ×Ä©Á½ÏîµÄµ×ÊýµÄ»ýµÄ2±¶¡£
¡îÔËÓù«Ê½·¨·Ö½âÒòʽ£¬ÐèÒªÕÆÎÕÏÂÁÐÒªÁ죺
£¨1£©ÎÒÃÇѧ¹ýµÄÈý¸ö³Ë·¨¹«Ê½¶¼¿ÉÓÃÓÚÒòʽ·Ö½â¡£¾ßÌåʹÓÃʱ¿ÉÏÈÅжÏÄÜ·ñÓù«Ê½·Ö½â£¬È»ºóÔÙÑ¡ÔñÊʵ±¹«Ê½¡££¨2£©¸÷¸ö³Ë·¨¹«Ê½ÖеÄ×Öĸ¿ÉÒÔÊÇÊý£¬µ¥Ïîʽ»ò¶àÏîʽ¡£
£¨3£©¾ßÌå²Ù×÷ʱ£¬Ó¦ÏÈ¿¼ÂÇÊÇ·ñ¿ÉÌṫÒòʽ£¬Óй«ÒòʽµÄÒªÏÈÌṫÒòʽÔÙÔËÓù«Ê½¡£ £¨4£©Òòʽ·Ö½âÒ»¶¨Òª·Ö½âµ½²»ÄܼÌÐø·Ö½âΪֹ£¬·Ö½âÖ®ºóÒ»¶¨Òª½«Í¬ÀàÏîºÏ²¢¡£
¡¾¾µäÀýÌâ¡¿
Àý1¡¢ÕÒ³öÏÂÁÐÖеĹ«Òòʽ£º
(1) a2b£¬5ab£¬9bµÄ¹«Òòʽ ¡£
(2) £5a2£¬10ab£¬15acµÄ¹«Òòʽ ¡£ (3) x2y(x£y)£¬2xy(y£x) µÄ¹«Òòʽ ¡£
1
Óî¹â½ÌÓý ³õ¶þÊýѧ
11 (4) a3b2?a2b3£¬a3b4?a4b3£¬a4b2?a2b4µÄ¹«ÒòʽÊÇ ¡£
22
Àý2¡¢·Ö½âÏÂÁÐÒòʽ£º
£¨1£©4xy?8xy?10xy £¨2£©?7a2b3c?21ab3c2?14abc 2322 £¨3£©?1312132ab?4ab?8ab
Àý3¡¢°ÑÏÂÁи÷ʽ·Ö½âÒòʽ:
£¨1£©(m?n)3?2a(n?m)2
Àý4¡¢°ÑÏÂÁи÷ʽ·Ö½âÒòʽ£º
(1)x2£4y2 (2)
(3)(2x?y)2?(x?2y)2
Àý5 °ÑÏÂÁи÷ʽ·Ö½âÒòʽ£º
(1) ?x2?4x?4 (2)
£¨4£©?13x3?23x2y?13x2y2?x3y £¨2£©2x(y?z)2?4y(z?y)3 ?1a2?3b23
4(x-y)4?(y?x)2 ?3x?6x2?3x3 2
(4)Óî¹â½ÌÓý ³õ¶þÊýѧ
(3)
102151292p?10p? £¨4£©0.16x2?xy?y 322525
˼¿¼Ì⣺ÒÑÖªa¡¢b¡¢c·Ö±ðÊÇ¡÷ABCµÄÈý±ß£¬ÇóÖ¤£º?a?b?c2222??4a2b2?0¡£
¡¾¾µäÁ·Ï°¡¿
Ò»¡¢Ìî¿ÕÌâ
1.д³öÏÂÁжàÏîʽÖй«Òòʽ
(1)5x?25x3 (2)14x2y5?35x3y2?21x4y3
1(3)a2?a?b??a3?b?a? (4)a3b2c?2ab2c3?a2b3c2
5 2£® 2x(b£a)+y(a£b)+z(b£a)= ¡£ 3. £4a3b2+6a2b£2ab=£2ab( )¡£
4. (£2a+b)(2a+3b)+6a(2a£b)=£(2a£b) ( )¡£
5. £(a£b)mn£a + b= .¡£
6£®Èç¹û¶àÏîʽmx?A¿É·Ö½âΪm?x?y?£¬ÔòAΪ ¡£ 7£®Òòʽ·Ö½â9m2£4n4=( )2£( )2= ¡£
8£®Òòʽ·Ö½â0.16a2b4£49m4n2=( )2£( )2= ¡£ 9£®Òòʽ·Ö½â?x?y??4x2= ¡£
21110£®Òòʽ·Ö½â?a5?8a3??a3?2211£®°ÑÏÂÁи÷ʽÅä³ÉÍêȫƽ·½Ê½¡£
????1a ¡£
23¢Ùa2?¢Ü4m2?2mn??9b2 ¢Úa2? ¢Ýa2?ab?3
12?b2 ¢Ûx2?x?43
¢Þm2?m?