新课标高中数学人教A版优秀教案必修25.示范教案(4.2.2圆与圆的位置关系)

4.2.2 圆与圆的位置关系

整体设计

教学分析

本节课研究圆与圆的位置关系,重点是研究两圆位置关系的判断方法,并应用这些方法解决有关的实际问题.教材是在初中平面几何对圆与圆的位置关系的初步分析的基础上结合前面学习的点与圆、直线与圆的位置关系,得到圆与圆的位置关系的几何方法,用代数的方法来解决几何问题是解析几何的精髓,是平面几何问题的深化,它将是以后处理圆锥曲线的常用方法.因此,增加了用代数方法来分析位置关系,这样有利于培养学生数形结合、经历几何问题代数化等解析几何思想方法及辩证思维能力,其基本思维方法和解决问题的技巧对今后整个圆锥曲线的学习有着非常重要的意义.根据学生的基础,学习的自觉性和主动性,自主学习和探究学习能力,平时的学习养成的善于观察、分析和思考的习惯,同时由于本节课从内容结构与思维方法上与直线与圆的位置关系相似,学生对上节课内容掌握较好,从而本节课从学生学习的角度来看不会存在太多的障碍,因而教学方法可以是引导学生从类比直线与圆位置关系来自主研究圆与圆的位置关系. 三维目标

使学生理解并掌握圆和圆的位置关系及其判定方法.培养学生自主探究的能力.通过用代数的方法分析圆与圆的位置关系,使学生体验几何问题代数化的思想,深入了解解析几何的本质,同时培养学生分析问题、解决问题的能力,并进一步体会数形结合的思想. 重点难点

教学重点:求弦长问题,判断圆和圆的位置关系. 教学难点:判断圆和圆的位置关系. 课时安排 1课时

教学过程

导入新课

思路1.平面几何中,圆与圆的位置关系有哪几种呢?如何判断圆与圆之间的位置关系呢? 判断两圆的位置关系的步骤及其判断方法如下:第一步:计算两圆的半径R,r;第二步:计算两圆的圆心距O1O2,即d;第三步:根据d与R,r之间的关系,判断两圆的位置关系. 两圆的位置关系:

外离 d>R+r 外切 d=R+r 相交 |R-r|<d<R+r 内切 d=|R-r| 内含 d<|R-r| 在解析几何中,我们用代数的方法如何判断圆与圆之间的位置关系呢?这就是我们本堂课研究的课题,教师板书课题圆与圆的位置关系.

思路2.前面我们学习了点与圆的位置关系、直线与圆的位置关系,那么,圆与圆的位置关系有哪几种呢?如何判断圆与圆之间的位置关系呢?教师板书课题:圆与圆的位置关系. 推进新课 新知探究 提出问题

①初中学过的平面几何中,圆与圆的位置关系有几种? ②判断两圆的位置关系,你有什么好的方法吗?

③你能在同一个直角坐标系中画出两个方程所表示的圆吗?

④根据你所画出的图形,可以直观判断两个圆的位置关系.如何把这些直观的事实转化为数学

语言呢?

⑤如何判断两个圆的位置关系呢?

⑥若将两个圆的方程相减,你发现了什么?

⑦两个圆的位置关系是否可以转化为一条直线与两个圆中的一个圆的关系的判定呢? 活动:

教师引导学生回顾学过的知识、举例,并对学生活动进行评价;学生回顾知识点时,可互相交流.教师引导学生阅读教科书中的相关内容,注意个别辅导,解答学生疑难,并引导学生自己总结解题的方法.学生观察图形并思考,发表自己的解题方法.教师应该关注并发现有多少学生利用“图形”求解,对这些学生应该给予表扬.同时强调,解析几何是一门数与形结合的学科.启发学生利用图形的特征,用代数的方法来解决几何问题.教师指导学生利用两个圆的圆心坐标、半径长、连心线长的关系来判别两个圆的位置.学生互相探讨、交流,寻找解决问题的方法,并能通过图形的直观性,利用平面直角坐标系的两点间距离公式寻求解题的途径. 讨论结果:①初中学过的平面几何中,圆与圆的位置关系有五类,分别是外离、外切、相交、内切、内含.

②判断两圆的位置关系,我们可以类比直线与圆的位置关系的判定,目前我们只有初中学过的几何法,利用圆心距与两圆半径的和与差之间的关系判断. ③略.

④根据所画出的图形,可以直观判断两个圆的位置关系.用几何的方法说就是圆心距(d)与两圆半径(r,R)的和与差之间的关系.

⑤判断两个圆的位置关系.一是可以利用几何法,即两个圆的圆心坐标、半径长、连心线长的关系来判别两个圆的位置关系.设两圆的连心线长为l,则判别圆与圆的位置关系的依据有以下几点: 1°当d>R+r时,圆C1与圆C2外离; 2°当d=R+r时,圆C1与圆C2外切; 3°当|R-r|<d<R+r时,圆C1与圆C2相交; 4°当d=|R-r|时,圆C1与圆C2内切; 5°当d<|R-r|时,圆C1与圆C2内含;

二是看两圆的方程组成的方程组的实数解的情况,解两个圆的方程所组成的二元二次方程组.若方程组有两组不同的实数解,则两圆相交;若方程组有两组相同的实数解,则两圆相切;若无实数解,两圆相离. 总结比较两种方法的优缺点.

几何方法:直观,容易理解,但不能求出交点坐标. 代数方法: 1°只能判断交点,并不能准确的判断位置关系(有一个交点时不能判断内切还是外切,无交点时不能判断内含还是外离). 2°优点是可以求出公共点.

⑥若将两个圆的方程相减,得到一个一元一次方程,既直线方程,由于它过两圆的交点,所以它是相交两圆的公共弦的方程.

⑦两个圆的公共点的问题可以化归为这条公共直线与两个圆中的一个圆的公共点的判定问题.由点到直线的距离公式来判断. 应用示例

思路1

例1 已知圆C1:x2+y2+2x+8y-8=0,圆C2:x2+y2-4x-4y-2=0,判断两圆的位置关系.

活动:学生思考交流,教师引导提示,判断两圆的位置关系有两种基本的方法,要合理使用.方法

一看两圆的方程组成的方程组的实数解的情况,方法二利用圆心距与两圆半径的和与差之间的关系判断.

22??x?y?2x?8y?8?0,解:方法一:圆C1与圆C2的方程联立得到方程组?22??x?y?4x?4y?2?0.(1)(2)

①-②得x+2y-1=0, ③ 由③得y=

1?x,把上式代入①并整理得x2-2x-3=0. ④ 2方程④的判别式Δ=(-2)2-4×1×(-3)=16>0,所以方程④有两个不等的实数根,即圆C1与圆C2相交.

方法二:把圆C1:x2+y2+2x+8y-8=0,圆C2:x2+y2-4x-4y-2=0,化为标准方程,得(x+1)2+(y+4)2=25与(x-2)2+(y-2)2=10.

圆C1的圆心是点(-1,-4),半径长r1=5; 圆C2的圆心是点(2,2),半径长r2=10.

圆C1与圆C2的连心线的长为(?1?2)2?(?4?2)2=35,圆C1与圆C2的半径长之和为r1+r2=5+10,

半径长之差为r1-r2=5-10.

而5-10<35<5+10,即r1-r2<35<r1+r2,

所以圆C1与圆C2相交,它们有两个公共点A、B.

点评:判断两圆的位置关系,一般情况下,先化为标准方程,利用几何法判断较为准确直观. 变式训练

判断下列两圆的位置关系,如果两圆相交,请求出公共弦的方程. (1)(x+2)2+(y-2)2=1与(x-2)2+(y-5)2=16, (2)x2+y2+6x-7=0与x2+y2+6y-27=0.

解:(1)根据题意,得两圆的半径分别为r1=1和r2=4,两圆的圆心距d=[2?(?2)?(5?2)=5.

因为d=r1+r2,所以两圆外切.

(2)将两圆的方程化为标准方程,得(x+3)2+y2=16,x2+(y+3)2=36. 故两圆的半径分别为r1=4和r2=6,

两圆的圆心距d=(0?3)?(3?0)?32.

因为|r1-r2|<d<r1+r2,所以两圆相交.

例2 已知圆C1:x2+y2+2x-6y+1=0,圆C2:x2+y2-4x+2y-11=0,求两圆的公共弦所在的直线方程及公共弦长. 活动:学生审题,思考并交流,探讨解题的思路,教师及时提示引导,因两圆的交点坐标同时满足两个圆方程,联立方程组,消去x2项、y2项,即得两圆的两个交点所在的直线方程,利用勾股定理可求出两圆公共弦长.

解:设两圆交点为A(x1,y1)、B(x2,y2),则A、B两点坐标满足方程组

2222

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4