小学应用题归类总结

1、归一问题 【含义】

在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。 【数量关系】 总量÷份数=1份数量

1份数量×所占份数=所求几份的数量 另一总量÷(总量÷份数)=所求份数 【解题思路和方法】

先求出单一量,以单一量为标准,求出所要求的数量。 例1

买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱? 解

(1)买1支铅笔多少钱?0.6÷5=0.12(元) (2)买16支铅笔需要多少钱?0.12×16=1.92(元) 列成综合算式0.6÷5×16=0.12×16=1.92(元) 答:需要1.92元。 例2

3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷? 解

(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷) (2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷) 列成综合算式90÷3÷3×5×6=10×30=300(公顷) 答:5台拖拉机6天耕地300公顷。 例3

5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次? 解

(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨) (2)7辆汽车1次能运多少吨钢材?5×7=35(吨) (3)105吨钢材7辆汽车需要运几次?105÷35=3(次) 列成综合算式105÷(100÷5÷4×7)=3(次) 答:需要运3次。

2、归总问题 【含义】

解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。 【数量关系】 1份数量×份数=总量 总量÷1份数量=份数

总量÷另一份数=另一每份数量 【解题思路和方法】

先求出总数量,再根据题意得出所求的数量。 例1

服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套? 解

(1)这批布总共有多少米?3.2×791=2531.2(米)

(2)现在可以做多少套?2531.2÷2.8=904(套) 列成综合算式3.2×791÷2.8=904(套) 答:现在可以做904套。 例2

小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》? 解

(1)《红岩》这本书总共多少页?24×12=288(页) (2)小明几天可以读完《红岩》?288÷36=8(天) 列成综合算式24×12÷36=8(天) 答:小明8天可以读完《红岩》。 例3

食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天? 解

(1)这批蔬菜共有多少千克?50×30=1500(千克) (2)这批蔬菜可以吃多少天?1500÷(50+10)=25(天) 列成综合算式50×30÷(50+10)=1500÷60=25(天) 答:这批蔬菜可以吃25天。

3、和差问题 【含义】

已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。 【数量关系】 大数=(和+差)÷2

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4