中考数学压轴题100题精选(41-50题)答案

中考数学压轴题100题精选(41-50题)答案

【041】(1)如图 (3分) y(千米)

150

100

50

0 1 2 -1

D B E A C 6 7 8 x(小时) 5 3 4 (2)2次······························································································································· (5分) (3)如图,设直线AB的解析式为y?k1x?b1,

0)B(6,150), 图象过A(4,,?4k1?b1?0,?k1?75,y?75x?300.① ···················································· (7分) ?????6k1?b1?150.?b1??300.设直线CD的解析式为y?k2x?b2, 图象过C(7,,0)D(5150),,

?7k2?b2?0,?k2??75,············································· (7分) ?y??75x?525.② ·????5k?b?150.b?525.?22?2解由①、②组成的方程组得??x?5.5,

?y?112.5.?最后一次相遇时距离乌鲁木齐市的距离为112.5千米. (12分) 【042】解:(1)∵点D是OA的中点,∴OD?2,∴OD?OC. 又∵OP是?COD的角平分线,∴?POC??POD?45°, ∴△POC≌△POD,∴PC?PD. ··················································································· 3分 (2)过点B作?AOC的平分线的垂线,垂足为P,点P即为所求.

易知点F的坐标为(2,2),故BF?2,作PM⊥BF, 1∵△PBF是等腰直角三角形,∴PM?BF?1,

2∴点P的坐标为(3,3).

2y CP (0,2) F M B A(4,0) x ∵抛物线经过原点,∴设抛物线的解析式为y?ax?bx. O E D ?9a?3b?3?a?13)和点D(2,0),∴有?又∵抛物线经过点P(3, 解得?

?4a?2b?0?b??2∴抛物线的解析式为y?x2?2x. ·························································································· 7分 (3)由等腰直角三角形的对称性知D点关于?AOC的平分线的对称点即为C点.

连接EC,它与?AOC的平分线的交点即为所求的P点(因为PE?PD?EC,而两点之间线段最短),此时△PED的周长最小. ∵抛物线y?x2?2x的顶点E的坐标(1,?1),C点的坐标(0,2),

?k?b??1?k??3CE设所在直线的解析式为y?kx?b,则有?,解得?.

b?2b?2??∴CE所在直线的解析式为y??3x?2.

1?x???y??3x?2??11?2点P满足?,解得?,故点P的坐标为?,?.

?22??y?x?y?1??2△PED的周长即是CE?DE?10?2.

2). ·(4)存在点P,使?CPN?90°.其坐标是?,?或(2,····································· 14分

【043】解(Ⅰ)

?11??22?y1?x,y2?x2?bx?c,y1?y2?0,

······································································································· 1分 ?x2??b?1?x?c?0.·将??,??21312分别代入x??b?1?x?c?0,得 2211?1??1??b?1??c?0,?b?1??c?0, ????????32?3??2?解得b?1151,c?.?函数y2的解析式为y2?x2?x?. ······································ 3分 6666(Ⅱ)由已知,得AB?2,设△ABM的高为h, 6?S△ABM?1121AB·h?h?3,即2h?.

1442121211511. 2h,由T?t2?t?,得?t2?t??6666144根据题意,t?T?2当t?5115t???时,解得t1?t2?; 6614412当t?25115?25?2t??时,解得t3?. ,t4?661441212?t的值为

55?25?2. ·························································································· 6分 ,,121212)

???2?b??c,???2?b??c,T?t2?bt?c.

?T????t????t???b?T????t????t???b?,

??????2?b??c????2?b??c?,化简得??????????b?1??0.

0?????1,得????0, ?????b?1?0.

有??b?1???0,??b?1???0. 又0?t?1,?t???b?0,t???b?0,

?当0?t≤a时,T≤?≤?;当??t≤?时,??T≤?;

当??t?1时,????T. ····································································································· 10分 【044】(1) 配方,得y=

取x=0代入y=

12

(x–2) –1,∴抛物线的对称轴为直线x=2,顶点为P(2,–1) . 212

x –2x+1,得y=1,∴点A的坐标是(0,1).由抛物线的对称性知,点A(0,21)与点B关于直线x=2对称,∴点B的坐标是(4,1). 2分

设直线l的解析式为y=kx+b(k≠0),将B、P的坐标代入,有 ?1?4k?b,?k?1,解得∴直线l的解析式为y=x–3.3分 ???1?2k?b,b??3.??(2) 连结AD交O′C于点E,∵ 点D由点A沿O′C翻折后得到,∴ O′C垂直平分AD. 由(1)知,点C的坐标为(0,–3),∴ 在Rt△AO′C中,O′A=2,AC=4,∴ O′C=25.

1148据面积关系,有 ×O′C×AE=×O′A×CA,∴ AE=5,AD=2AE=5.

2255AFDFAD作DF⊥AB于F,易证Rt△ADF∽Rt△CO′A,∴, ??ACO?AO?CAD16AD8∴ AF=·AC=,DF=·O′A=,5分

O?C5O?C583又 ∵OA=1,∴点D的纵坐标为1–= –,

55163∴ 点D的坐标为(,–).

55

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4