7. (2019通辽)先化简,再求值.
??5-2x≥1,1x2+2x1
÷2+,请从不等组?的整数解中选择一个你喜欢的求值. 1-xx-2x+1x+2?x+3>0?
参考答案
基础达标训练
1. B 2. D 3. D 4. D
a2+12a2+1-2a2-1(a-1)(a+1)
5. A 【解析】-====a-1.
a+1a+1a+1a+1a+1
2aa+22a-(a+2)a-2
6. B 【解析】原式=-==
(a+2)(a-2)(a+2)(a-2)(a+2)(a-2)(a+2)(a-2)=1. a+27. 2
4(x+2)(x-2)x448. 【解析】原式=- =-=. 2-xx-2x-2x-22-x2
a-1(a+1)29. 2019 【解析】原式=×=a+1,当a=2018时,原式=2018+1=2019.
a+1a-1
10. 解:原式=
1m- m(m-1)m-1
2
1m=- m(m-1)m(m-1)1-m= m(m-1)=
(1+m)(1-m)
m(m-1)
2
1+m=-. m(x-2)x-211. 解:原式=÷ (x+2)(x-2)x(x+2) =
2
x-2x(x+2)
· x+2x-2
=x.
12. 解:原式=
2(a+1)(a-1)1·+ a-12(a-2)2-a =
a+11
- a-2a-2a. =
a-2
13. 解:原式=[-m-2
m2
(m+2)(m-2)
]
m-2
·
(m+2)(m-2)
2(m+2)
m2-(m2-4)m-2=·
m-22
=
4m-2· m-22
=2.
14. 解:圆圆的解答不正确,正确解答结果如下: 4x原式=-
(x+2)(x-2)2(x+2)
-
(x+2)(x-2)
x2-4
(x+2)(x-2)
4x-(2x+4)-(x-4)= (x+2)(x-2)=
-x(x-2)
(x+2)(x-2)
2
=-
xx+2
. a-1a-1
15. 解:原式= 2-
(a-1)(a+1)(a-1)
=
11- a-1a+1
=
a+1-(a-1)
(a-1)(a+1)
2. a-1
2
=
22
当a=3时,原式===1. 2
3-1(3)-116. 解:原式=
a(a+1)(a-1)a·-
a(a-1)a+1a-1
=1-aa-1
=-
1
. a-1
当a=2时, 1
原式=-=-1.
2-1
2x12(x+2)
17. 解:原式=[-]· (x+2)(x-2)x-23x=
2x-x-2
·
(x+2)(x-2)
2(x+2)
3x=
x-2
·
(x+2)(x-2)
2(x+2)
3x=2. 3x当x=-3时,
22
原式==-.
3×(-3)9能力提升拓展
(x+2)1(x+2)1111. B 【解析】化简2-==1-,∵x为正整数,即x≥1,∴0<2-x+4x+4x+1(x+2)x+1x+1x+1
2
2
11111≤,∴-≤-<0,∴≤1-<1,即原式的值落在段②之间. 22x+12x+1
x2+xy-xy+y2
2. B 【解析】根据去括号规则,第②步应为,故选B.
(x-y)(x+y)
3. ④
115m+5n-2mn5(m+n)-2mn10mn-2mn8mn4. -4 【解析】由+=2得m+n=2mn,∴====
mn-m-n-(m+n)-2mn-2mn-4.
a2-2ab+b2a2-ab2
5. 解:原式=÷- 22
a-baa+b(a-b)a2
=·- (a+b)(a-b)a(a-b)a+b=
12- a+ba+b1. a+b2
2
=-
∵(a-2)+b+1=0, ∴a-2=0,b+1=0. ∴a=2,b=-1.
1
当a=2,b=-1时,原式=-=-1.
2-1
(a+2)(a-2)1a(a-2)
6. 解:原式=[+]· 2
(a-2)a-22=(
a+21a(a-2)
+)· a-2a-22
=
a+3a(a-2)· a-22a2+3a2
. 2
=
∵a满足a+3a-2=0, ∴a+3a=2.
2