输出占空比可变的PWM波形

DSP原理及应用大作业

输出占空比可变的PWM波形

输出占空比可变的PWM波形

任务目的

1. 掌握CCS集成开发环境的调试方法; 2. 掌握C/C++语言与汇编混合编程;

3. 熟悉CCS集成开发环境,掌握工程的生成方法; 4. 掌握如何输出占空比可变的PWM波形 5. 了解PWM波形产生的原理和应用

任务内容

1. 通过学习课本和查询课外资料了解空间矢量PWM产生的原理;

2. 利用CCS集成开发环境,建立工程,完成DSP汇编源文件的建立和编写,实现对称空间矢量PWM波形生成,在该程序中,利用定时器1ms中断来实现每隔1s改变1次CMPR1;

3. 编译并且在片外区通过连接示波器运行得出正确结果,利用示波器观察波形

任务原理 1.PWM的原理

脉宽调制(PWM)基本原理:控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等的脉冲,用这些脉冲来代替正弦波或所需要的波形。也就是在输出波形的半个周期中产生多个脉冲,使各脉冲的等值电压为正弦波形,所获得的输出平滑且低次谐波少。按一定的规则对各脉冲的宽度进行调制,即可改变逆变电路输出电压的大小,也可改变输出频率。

例如,把正弦半波波形分成N等份,就可把正弦半波看成由N个彼此相连的脉冲所组成的波形。这些脉冲宽度相等,都等于 ∏/n ,但幅值不等,且脉冲顶部不是水平直线,而是曲线,各脉冲的幅值按正弦规律变化。如果把上述脉冲序列用同样数量的等幅而不等宽的矩形脉冲序列代替,使矩形脉冲的中点和相应正弦等分的中点重合,且使矩形脉冲和相应正弦部分面积(即冲量)相等,就得到一组脉冲序列,这就是PWM波形。可以看出,各脉冲宽度是按正弦规律变化的。根据冲量相等效果相同的原理,PWM波形和正弦半波是等效的。对于正弦的负半周,也可以用同样的方法得到PWM波形。

在PWM波形中,各脉冲的幅值是相等的,要改变等效输出正弦波的幅值时,只要按同一比例系数改变各脉冲的宽度即可,因此在交-直-交变频器中,PWM逆变电路输出的脉冲电压就是直流侧电压的幅值。根据上述原理,在给出了正弦

波频率,幅值和半个周期内的脉冲数后,PWM波形各脉冲的宽度和间隔就可以准确计算出来。按照计算结果控制电路中各开关器件的通断,就可以得到所需要的PWM波形。

2.DSP的原理

数字信号处理前后需要一些辅助电路,它们和数字信号处理器构成一个

系统。

初始信号代表某种事物的运动变换,它经信号转换单元可变为电信号。例如声波,它经过麦克风后就变为电信号。 又如压力,它经压力传感器后变为电信号。电信号可视为许多频率的正弦波的组合。

低通滤波单元滤除信号的部分高频成分,防止模数转换时失去原信号的基本特征。模数转换单元每隔一段时间测量一次模拟信号,并将测量结果用二进制数表示。

数字信号处理单元实际上是一个计算机,它按照指令对二进制的数字信号进行计算。

数模转换单元将处理后的数字信号变为连续时间信号,这种信号的特点是一段一段的直线相连,调制后的数字信号,变成模拟信号后才能送往天线,通过天线就可以向外发射了。低通滤波单元有平均的作用,不平滑的信号经低通滤波后,可以变得比较平滑。

平滑的信号经信号转换单元后,就变成某种物质的运动变化。例如扬声器,它可将电波变为声波。又如天线,它可将电流变为电磁波。电磁波是一种互相变化的电场和磁场,可以在空间中以波的形式快速移动。

任务内容

假设EVA的PMW1和PWM2引脚输出频率是1KHz的互补的PWM波形,波形的占空比每隔1s变化5%,变化范围是10%~15%,从10%不断增加到90%,然后从90%不断减少到10%,如此循环,而且PMW1和PWM2具有死区,间隔为4.27us。

此处如果输出占空比固定的PWM,如是10%或者是90%,那解决的方法历城相同,关键此处要求占空比每隔1s变化。通过面前的学习知道,本例程需要使用定时器T1和比较单元1,所以也就是需要改变CMPR1的值,我们需要利用T1的周期中断来实现。

定时器T1的时钟为37.5MHz,此例程使用定时器T1工作于连续增或减计数模式。由于PWM输出频率是1KHz,这样可以得出T1PR=18750,表示成十六进制就是0x493E。但是,由于频率是1KHz,周期是1ms,那如何利用定时器来实现每隔1ms改变1次CMPR1?这就需要在周期中断里面设置一个统计

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4