.
qm1 1 p1, T1 3 1 qm3 p3, T3 2 3 qm2 p2, T2 2 图2-13 合流 式换热器等都有合流的问题。通常合流过程都是绝热的。取1-1、2-2和3-3截面之间的空间为控制体积,列出能量方程式并导出出口截面上焓值h3的计算式。
进入系统的能量–离开系统的能量=系统贮存能量的变化
系统贮存能量的变化:不变。
进入系统的能量:qm1带入的和qm2带入的。没有热量输入。
qm1(h1+cf12/2+gz1)+ qm2(h2+cf22/2+gz2)
离开系统的能量:qm3带出的,没有机械能(轴功)输出。
.
.
qm3(h3+cf32/2+gz3)
如果合流前后流速变化不太大,且势能变化一般可以忽略,则能量方程为:
qm1?h1+ qm2?h2= qm3?h3
qm3 3 p3, T3 1 3 qm1 p1, T1 2 1 qm2 p2, T2 2 图2-14 分流 出口截面上焓值h3的计算式
h3= (qm1?h1+ qm2?h2)/ qm3
本题中,如果流体反向流动就是分流问题,分流与合流问题的能量方程式是一样的,一般习惯前后反过来写。
qm1?h1 = qm2?h2+ qm3?h3
.
.
1.怎样正确看待“理想气体”这个概念?在进行实际计算时如何决定是否可采用理想气体的一些公式?
第一个问题很含混,关于“理想气体”可以说很多。可以说理想气体的定义:理想气体,是一种假想的实际上不存在的气体,其分子是一些弹性的、不占体积的质点,分子间无相互作用力。也可以说,理想气体是实际气体的压力趋近于零时极限状况。还可以讨论什么情况下,把气体按照理想气体处理,这已经是后一个问题了。后一个问题,当气体距离液态比较远时(此时分子间的距离相对于分子的大小非常大),气体的性质与理想气体相去不远,可以当作理想气体。理想气体是实际气体在低压高温时的抽象。
2.气体的摩尔体积Vm是否因气体的种类而异?是否因所处状态不同而异?任何气体在任意状态下摩尔体积是否都是0.022414m3/mol?
气体的摩尔体积Vm不因气体的种类而异。所处状态发生变化,气体的摩尔体积也随之发生变化。
.
.
任何气体在标准状态(p=101325Pa,T=273.15K)下摩尔体积是0.022414m3/mol。在其它状态下,摩尔体积将发生变化。
3.摩尔气体常数R值是否随气体的种类而不同或状态不同而异?
摩尔气体常数R是基本物理常数,它与气体的种类、状态等均无关。
4.如果某种工质的状态方程式为pv=RgT,这种工质的比热容、热力学能、焓都仅仅是温度的函数吗?
是的。
5.对于确定的一种理想气体,cp–cv是否等于定值?cp/cv是否为定值?cp–cv、cp/cv是否随温度变化?
cp–cv=Rg,等于定值,不随温度变化。cp/cv不是定值,将随温度发生变化。
6.迈耶公式cp–cv=Rg是否适用于动力工程中应用的高压水蒸气?是否适用于地球大气中的水蒸气?
不适用于前者,一定条件下近似地适用于后者。
7.气体有两个独立的参数,u(或h)可以表示为p和v的函数,即u=f(p, v)。但又曾得出结论,理想气体的热力学能(或焓)只取决于温度,这两点是否矛盾?为什么?
不矛盾。pv=RgT。热力学能(或焓)与温度已经相当于一个状态参数,他们都可以表示为独立参
.
.
数p和v的函数。
8.为什么工质的热力学能、焓和熵为零的基准可以任选,所有情况下工质的热力学能、焓和熵为零的基准都可以任选?理想气体的热力学能或焓的参照状态通常选定哪个或哪些个状态参数值?对理想气体的熵又如何?
我们经常关注的是工质的热力学能、焓和熵的变化量,热力学能、焓和熵的绝对量对变化量没有影响,所以可以任选工质的热力学能、焓和熵为零的基准。所有情况下工质的热力学能、焓和熵为零的基准都可以任选?不那么绝对,但是在工程热力学范围内,可以这么说。工质的热力学能、焓和熵的绝对零点均为绝对零度(0K),但是目前物理学研究成果表明,即使绝对零度,工质的热力学能、焓和熵也不准确为零,在绝对零度,物质仍有零点能,由海森堡测不准关系确定。(热力学第三定律可以表述为,绝对零度可以无限接近,但永远不可能达到。)
标准状态(p=101325Pa,T=273.15K)。(p=101325Pa,T=293.15K)、(p=101325Pa,T=298.15K),水的三相点,等等。
9.气体热力性质表中的u、h及s0的基准是什么状态?
.