WORD格式.整理版
第二章 习题解答
2-1试求下列各函数的拉氏变换。
(a)f(t)?1?2t,(b)f(t)?3?7t?t??(t),(c)f(t)?e?2e2?t2?t?2t?te?3t,
?t(d)f(t)?(t?1),(e)f(t)?sin2t?2cos2t?esin2t,(f)f(t)?te?2tcost,(g)f(t)?tsin3t?2tcost,(h)f(t)?1(t)?2tcos2t 解:
12112372?? ?2(b)F(s)?1??2?3(c)F(s)?2s?1s?2(s?3)sssss22s22212?2?(d)f(t)?t?2t?1,F(s)?3??(e)F(s)?2 s?4s?4(s?1)2?4sss?2s?d?2?116s2?2s?1?????2(f)F(s)? 2s?1dss?1(s?1)?3??2s?d?22?d?2?6s2s2?2s?3?s?1?????222?2(g)F(s)??
dsds(s?3)(s?1)2?2s?d?2?21s?4?16s?8???2(h)F(s)?? sdss(s?4)2(a)F(s)?
2-2试求图2.54所示各信号的拉氏变换。
x(t)x(t)x(t)b21x(t)?104t0t0?4t0tac02TTt1t2t3t0?1t
(a) (b) (c) (d)
图2.54 习题2-2图
解:
1e?t0se?t0s1e?t0s?2?2 (a)X(s)??2(b)X(s)??t0sssss(c)
aae?t1sbe?t1sbe?t2sce?t2sce?t3sa(b?a)?t1sc?b?t2sce?t3sX(s)????????e?e?
ssssssssss(d)
x(t)?1(t)?1(t?T)??11t1(t)?(t?T)1(t?T)?1(t?T)TT11(t?T)1(t?T)?(t?2T)1(t?2T)?1(t?2T) TT111?1(t)?2?1(t?T)?t?2(t?T)1(t?T)?(t?2T)1(t?2T)?1(t?2T)TTT优质.参考.资料
WORD格式.整理版
所以
1e111e1eX(s)??2??2?ssTs2Ts2Ts2(a)F(s)??Ts?Ts?2Ts111s?s?e??2T?22Te?Ts?2Te?2Ts
ssss?2Tss?2-3运用部分分式展开,求下列各像函数的原函数。
2103s?2,(b)F(s)?,(c)F(s)?2,
s(s?2)s(s?1)(s?10)s?4s?20e?2s2(s?2)s?1(d)F(s)?,(e)F(s)?2,(f)F(s)?2
s(s?1)(s2?4)s解:
(a)部分分式分解有
F(s)?查表得
21?1??
s(s?2)ss?2f(t)?1?e?2t
(b)部分分式分解有
F(s)?查表得
101?1.11110.1111???
s(s?1)(s?10)ss?1s?10f(t)?1?1.1111e?t?0.1111e?10t
(c)部分分式分解有
F(s)?3s?2s?24?3?s2?4s?20(s?2)2?42(s?2)2?42?3s?21422??3?1???22(s?2)2?4222(s?2)2?423?13?1??查表得
f(t)?3e?2tcos4t?e?2tsin4t?3.162e?2t(0.949cos4t?0.3162sin4t)?3.162eF(s)???2tsin(4t?108.38)o
(d)部分分式分解有
2(s?2)0.667?0.667s?2.667??2(s?1)(s?4)s?1s2?220.6672?0.667s2??s??0.667?2?2??0.2980.447?0.894???2s?1s2?22?s?1s2?22s2?22??s?2?
查表得
f(t)?0.667e?t?0.298?0.447cos2t?0.894sin2t??0.667e?t?0.298(sin2t?153.4o)
(e)部分分式分解有
F(s)?查表得
s?111??2 s2ssf(t)?1?t
(f)根据位移定理有
优质.参考.资料
WORD格式.整理版
f(t)?(t?2)?1(t?2)
2-4用拉氏变换求解下面的常微分方程。
&&&(a)&y?y?3y?0,y(0)?1,y(0)?2
&&&y?4y?5y?t,y(0)?1,y(0)?1 (b)&&&?sint,y(0)?1,y&(c)&y?y(0)?2
2&&y?4y?3y?te(d)&解:
?2t&,y(0)?1,y(0)??4
(a)根据微分定理,微分方程两边拉氏变换得
s2Y(s)?s?2?sY(s)?1?3Y(s)?0
即
Y(s)?部分分式分解有
s?3
s2?s?3Y(s)?拉氏反变换得到
s?3s?0.51.658??1.5076 22222s?s?3(s?0.5)?1.658(s?0.5)?1.658y(t)?e?0.5tcos1.658t?1.5076e?0.5tsin1.658t
(b)根据微分定理,微分方程两边拉氏变换得
s2Y(s)?s?2?4sY(s)?4?5Y(s)?即
2 3ss4?6s3?2Y(s)?2
(s?4s?5)s3部分分式分解有
s4?6s3?22822103s?24961Y(s)?2?????
(s?4s?5)s35s325s2125s125(s?2)2?1125(s?2)2?1拉氏反变换得到
1822103?2t496?2ty(t)?t2?t??ecost?esint
525125125125(c)根据微分定理,微分方程两边拉氏变换得
s2Y(s)?s?2?sY(s)?1?即
1 s2?1s3?3s2?s?4Y(s)?2
(s?s)(s2?1)部分分式分解有
s3?2s2?s?342.50.5s0.5Y(s)?2???? 222(s?s)(s?1)ss?1s?1s?1拉氏反变换得到
y(t)?4?2.5e?t?0.5cost?0.5sint
(d)根据微分定理,微分方程两边拉氏变换得
优质.参考.资料