解析函数的概念探究及其教学特点分析
引言
复变函数论是现行大学本科数学专业的核心课程,主要学习经典的解析函数理论.早在19世纪,有关解析函数的研究就已经形成了非常系统的理论.这一数学分支是19世纪最为独特的创造,几乎统治了整个19世纪,曾被认为是抽象科学中最和谐的理论之一.自其形成以来,一方面,它深刻地渗透到了代数学、解析数论、微分方程、概率统计、计算数学等数学分支;另一方面,它又被广泛地应用于理论物理、弹性理论、流体力学、电学以及天体力学等方面.它和数学其他分支的联系也日益密切.并且,对它的研究还发展出了一些新的数学分支.因而,在大学数学专业的课程学习中,解析函数的理论占有十分重要的地位. 一般而言,在本科阶段该课程包含的主要内容有:解析函数及其性质、复函数的积分理论、解析函数的Taylor展式、解析函数的Laurent展式、留数理论、共形映射以及解析延拓等.这些内容都围绕解析函数这个中心概念展开.要学好复变函数理论,弄清解析函数是一个关键.然而,在教学的过程当中,针对学生而言,对于解析函数概念的学习,尤其是对其本质的认识,仍然是一个薄弱的环节.所以,在教学的过程当中,有必要对解析函数的概念在深层次上作一定的剖析和探究,同时对其教学特点作一定的分析和总结.这样一来,有利于教学活动的有效展开,
起到事半功倍的作用.
文章首先论述了解析概念的产生,介绍了解析函数研究的背景及其发展过程;其次深刻分析了函数解析的本质,总结了若干解析的等价条件;然后具体剖析了解析概念在课程教学中的重要性;接着指出了现行课程教学中存在的突出问题;最后,针对问题分析了解析函数内容教学的特点并给出了相应的教学建议. 一、解析概念的产生 1.研究的历史
复数以及复变函数的研究是与部分分式积分法,确定复数与复数的对数,保形映射,以及实系数多项式的分解等研究相联系而被引入数学的.
三、解析概念教学的重要性 1.解析概念的地位
解析函数是复变函数论研究的中心对象,因而复变函数论常常又称为解析函数论.解析函数是整个复变函数论最基本最重要的概念.
其重要性体现在:首先,通过解析函数的定义,将复变函数论的中心研究对象作了界定,使课程主题对象明确化.其次,由解析函数论研究的历史,许多相关的数学和实际问题的研究其对应的对象都是解析函数,这在课程中有重要的体现.最后,在课程中,由不同时期关于复变函数的研究得到的结果是由解析这个概念系统组织在一起的.
2.解析概念的纽带作用
现行大学复变函数论课程的内容因要求不同而有所区别.一般在本科阶段该课程包含的主要内容有:解析函数及其性质、复函数的积分理论、解析函数的Taylor展式、解析函数的Laurent展式、留数理论、共形映射以及解析延拓等.如上所言,解析函数是该课程研究的中心对象,而解析又是该课程最基本最重要的概念.实际上,在课程教学中,解析概念还起着关键的纽带作用. 除去复数与复变函数的基本概念外,课程其他部分的内容均围绕解析函数而展开.在讨论复积分时,由函数解析得到著名的柯西积分定理和柯西积分公式等结论;在复级数的讨论中,得到幂级数的解析性和解析函数的级数性质;随后对环状区域内函数的解析与级数展开讨论了条件与性质;在讨论留数理论时,虽然是针对奇点(不解析点),但还是利用去心邻域内函数的解析性;共形映射则从几何的角度讨论解析的性质与应用.所以,课程的各部分内容都是由解析概念联系在一起的. 四、教学中的问题 1.背景知识教学的缺乏
目前,大学数学专业课程的教学中普遍存在概念背景知识教学的缺乏.通常直接给出概念以及公理、引理,接下来,大部分时间在做推理论证.这种教学和学习的方式使学生感到课程枯燥乏味,大大降低了学习效率.复变函数论课程的教学中当然也存在类似问题.