《电路理论基础》(第三版 陈希有)习题答案第四章

答案4.1

解:将非线性电阻左侧电路用戴维南定理进行等效化简,如图(b)所示。

1?1VI(b)?U?

列KVL方程

1??I?U?1V (1) 将非线性电阻特性I?(1S?U)2代入方程(1),得

U2?U?1?0 解得

U??0.618V,U????1.618V(舍去) I?(1S?U?)2?0.382A

答案4.2

解:将非线性电阻之外的电路等效化简,得图(b)所示电路。

?18VUI?1?

列KVL方程

1??I?U?18?0 (1) 将U?I2?2I代入方程(1),得

I2?3I?18?0

解得:

I??3A, I????6A

(b)U??(I?)2?2I??15VU???(I??)?2I???24V2

答案4.3

解:由非线性电阻的电压电流关系特性

I1?0.1U1,I2?0.05U2 得

2U1?100I12 ,U2?400I2 (1) 对回路列KVL方程

U1?U2?5V (2) 将式(1)代入式(2)

2100I12?400I2?5

由非线性电阻串联可知 I1?I2

500I12?5

解得

I1??0.1A ,I1????0.1A(舍去) 即

I1?0.1A

U1?100I12?1V

答案4.4

解:对节点①、②列节点电压方程,其中非线性电阻电流设为未知量:

(G1?G2)Un1?G2Un2?GU1s1?I1?I2 (1)

?G2Un1?(G2?G3)Un2?IS?I2 (2)

为消去I1、I2,须列补充方程

?I1?f1(U1)?f1(Un1)??I2?f2(U2)?f2(Un1?Un2?US2)将式(3)代入式(1)、(2),整理后得

(3) (4)

?(G1?G2)Un1?G2Un2?f1(Un1)?f2(Un1?Un2?US1)?G1US1?

?G2Un1?(G2?G3)Un2?f2(Un1?Un2?US2)?IS?答案4.5

解:设回路电流方向如图所示。列回路电流方程

回路la:R1Ia?U1?R1Ia?f1(I1)?US (1) 回路lb:?U1?R2Ib?U2??f1(I1)?R2Ib?f2(I2)?0 (2) 将支路电流I1、I2用回路电流表示,得

?I1?Ia?Ib (3) ??I2?Ib?IS将式(3)代入式(1)、(2),消去I1、I2得回路电流方程:

R1Ia?f1(Ia?Ib)?US? ??f(I?I)?RI?f(I?I)?02b2bS?1ab注释:非线性电阻均为流控型,宜列写回路电流方程。

答案4.6

解:参考点及独立节点编号如图所示。图中节点①与参考点之间为纯电压源支路,则该节点电压为US。设非线性电阻电流I1、I2为未知量,对图示电路节点②、③列KCL方程:

节点②: ?I1?G2Un2?I2?G2Un3?0 (1)

节点③: ?GU1n1?G2Un2?(G1?G2)Un3?IS (2)

将压控非线性电阻电流用节点电压表示,流控非线性电阻电压用节点电压来表示,即

I2?f2(U2)?f2(Un2) (3) Un1?Un2?U1?f1(I1) (4)

将式(3)代入式(1),将Un1?US代入式(2),再与式(4)联立得该电路方程:

??I1?G2Un2?f2(Un2)?G2Un3?0???G2Un2?(G1?G2)Un3?IS?GU1S ?Un1?Un2?f1(I1)?答案4.7

解:对节点列KCL方程

节点①:?3A?I3?I1?0 (1) 节点②:?I1?I2?I4?0 (2) 由图示电路可知

UU?U2 (3) I3?n1?11?1?U?2VU2?2VI4?n2? (4)

1?1?3将式(3)、(4)及已知条件I1?U13和U2?I2代入式(1)、(2)得

?U13?I23?I2??2 ?33U?U?I?3?112即为所求二元方程组。

答案4.8

解:列回路电压方程

1?I?U?12?0

将非线性电阻的电压电流关系特性代入得

0.2U2?0.3U3?U?12?0

为解上述非线性方程,令

f(U)?0.3U3?0.2U2?U?12 (1)

求导数,得

f?(U)?0.9U2?0.4U?1 (2)

U(k?1)?U(k)f(U(k))? (3) f?(U(k))将式(1)、(2)代入牛顿-拉夫逊公式,得

Uk?1f(Uk)0.3(Uk)3?0.2(Uk)2?Uk?12?Uk??Uk? ?f(Uk)0.9(Uk)2?0.4Uk?1取初值U0?3V,迭代过程列于下表:

f(U)/V U/V k 0 3 0.9 1 2.9126 2.173×10-2 2 2.9104 1.859×10-4 f?(U) 10.3 9.8 9.7875

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4