二次函数动点问题典型例题

范文范例 学习指导

二次函数动点问题典型例题

等腰三角形问题

1. 如图,在平面直角坐标系中,已知抛物线y=ax+bx的对称轴为x=,且经过点A(2,1),点P是抛物线上的动点,P的横坐标为m(0<m<2),过点P作PB⊥x轴,垂足为B,PB交OA于点C,点O关于直线PB的对称点为D,连接CD,AD,过点A作AE⊥x轴,垂足为E.

(1)求抛物线的解析式; (2)填空:

①用含m的式子表示点C,D的坐标: C( , ),D( , ); ②当m= 时,△ACD的周长最小;

(3)若△ACD为等腰三角形,求出所有符合条件的点P的坐标.

2

面积最大

1. 如图,抛物线y=﹣x+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2). (1)求抛物线的表达式;

(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;

(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.

2

word完美整理版

范文范例 学习指导

2.已知:如图,直线y=3x+3与x轴交于C点,与y轴交于A点,B点在x轴上,△OAB是等腰直角三角形.

(1)求过A、B、C三点的抛物线的解析式;

(2)若直线CD∥AB交抛物线于D点,求D点的坐标;

(3)若P点是抛物线上的动点,且在第一象限,那么△PAB是否有最大面积?若有,求出此时P点的坐标和△PAB的最大面积;若没有,请说明理由.

3. (2015?黔西南州)(第26题)如图,在平面直角坐标系中,平行四边形ABOC如图放置,将此平行四边形绕点O顺时针旋转90°得到平行四边形A′B′OC′.抛物线y=﹣x2+2x+3经过点A、C、A′三点.

(1)求A、A′、C三点的坐标;

(2)求平行四边形ABOC和平行四边形A′B′OC′重叠部分△C′OD的面积;

(3)点M是第一象限内抛物线上的一动点,问点M在何处时,△AMA′的面积最大?最大面积是多少?并写出此时M的坐标.

word完美整理版

范文范例 学习指导

最短路径

1.(2014绵阳)如图,抛物线y=ax+bx+c(a≠0)的图象过点M(﹣2,为N(﹣1,

),且与x轴交于A、B两点,与y轴交于C点.

2

),顶点坐标

(1)求抛物线的解析式;

(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;

(3)在直线AC上是否存在一点Q,使△QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由.

2. (2014?泸州)如图,已知一次函数y1=x+b的图象l与二次函数y2=﹣x+mx+b的图象C′都经过点B(0,1)和点C,且图象C′过点A(2﹣(1)求二次函数的最大值;

,0).

2

(2)设使y2>y1成立的x取值的所有整数和为s,若s是关于x的方程

=0的根,求a的值;

(3)若点F、G在图象C′上,长度为的线段DE在线段BC上移动,EF与DG始终平行于y轴,当四边形DEFG的面积最大时,在x轴上求点P,使PD+PE最小,求出点P的坐标.

word完美整理版

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4