小学数学奥数方法讲义40讲(二)

从表15-3可以看出,甲、乙二校所买篮球的个数一样多,甲校比乙校多用钱:

415-295=120(元)

甲校比乙校多买排球数是:

8-4=4(个)

所以,每个排球的卖价是:

120÷4=30(元)

答略。

例4 要把卖5角钱500克的红辣椒和卖3角5分钱500克的青辣椒混合起来,卖4角1分钱500克,应按怎样的比例混合,卖主和顾客才都不吃亏?(适于六年级程度)

解:摘录题中条件,排列成表15-4(为便于计算,表中钱数都以“分”为单位)。

表15-4

要使卖主与买主都不吃亏,就要使红辣椒损失的钱数与青辣椒多收入的钱数一样多。由表15-4可看出,当红辣椒损失18分,青辣椒多收入18分时,恰好达到要求。

因为每500克红辣椒与青辣椒混合时,红辣椒要少卖9分钱,当损失18分时,则有500×2克红辣椒;同理,青辣椒与红辣椒混合时,每500克青辣椒要多卖6分钱,要多卖18分时,就要有3个500克才行,即500×3克青辣椒。

所以,红辣椒与青辣椒混合的比应是:

500×2∶500×3=2∶3

答略。

*例5 甲种酒每500克卖1元4角4分,乙种酒每500克卖1元2角,丙种酒每500克卖9角6分。现在要把三种酒混合成每500克卖1元1角4分的酒,其中乙种酒与丙种酒的比是3∶2。求混合酒中三种酒的重量比。(适于六年级程度)

解:设混合酒中甲种酒占的份数是x,为便于计算题中钱数都以“分”为单位。摘录题中条件,排列成表15-5。

表15-5

从表15-5可以看出,当三种酒的混合比是x∶3∶2,混合酒的价钱是114分时,混合酒中每500克甲种酒要损失(少卖)30分钱,每500克乙种酒要损失6分钱,而每500克丙种酒要收益(多卖)18分钱。

当乙、丙两种酒的混合比是3∶2时,假设乙、丙两种酒分别是1.5千克、1千克,则这两种酒的混合液可以多卖钱:

18×2-6×3=18(分)

当三种酒按x∶3∶2的比例混合时,收益的18分钱应与甲种酒的损失抵消。因为三种酒混合时,每500克甲种酒损失30分,所以18分是30分的几分之几,甲种酒在三种酒的混合液中就占500克的几分之几:

答:混合酒中三种酒的重量比是3∶15∶10。 (二)通过列表暴露题目的中间问题

解答复合应用题的关键,是找出解答最后问题所需要的中间问题(隐藏量),应用题的步骤越多,需要找出的中间问题就越多,解答的过程就越复杂。 在用列表法解应用题时,由于题中数量是按“同事横对,同名竖对”的规律排列在表中,所以便于思考求最后的问题需要哪些数量,这些数量中哪些是已知的、哪些是未知的中间问题。同时也便于思考怎样求出中间问题,并在必要时把求中间问题的算式写在表中。这样,中间问题便暴露于表格中,和已知数处于平等的地位,从而排除了思维道路上的障碍,减轻了解题的难度。

*例1 张老师买了2千克苹果,3千克梨,共用5元钱。王老师买的苹果是张老师的2倍,买的梨是张老师的3倍,比张老师多用6.8元。问每一千克苹果、每一千克梨的价钱各是多少元?(适于五年级程度)

解:摘录题中条件,排列成表15-6。

表15-6中,由于张老师买的苹果是2千克、梨是3千克,共用5元钱,都已写在表中,因此很容易在表中写出王老师买的苹果是2×2千克,王老师买的苹果恰好是张老师的2倍,也很容易写出王老师买的梨是3×3千克,王老师买的梨比张老师的2倍多3×(3-2)千克,即多3千克。

表15-6

王老师共用钱(5+6.8)元,王老师买水果用的钱比张老师买水果用的钱的2倍多:

(5+6.8)-5×2=1.8(元)

这1.8元就是买3千克梨用的钱,所以1千克梨的价钱是:

1.8÷3=0.6(元)

1千克苹果的价钱是: </

>>闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊椤掑鏅悷婊冪箻楠炴垿濮€閵堝懐顔婂┑掳鍊愰崑鎾剁棯閹岀吋闁哄矉缍侀獮鍥敍閿濆棌鎸呮繝鐢靛仜濡﹥绂嶅⿰鍫濈闁逞屽墮椤啴濡堕崱妤€衼缂傚倸绉村Λ妤€鐜婚崸妤佸亜闁稿繐鐨烽幏铏圭磼缂併垹骞栭柟鍐茬箺閵囨劘顦寸紒杈ㄥ浮閹晠宕橀懠顑挎偅缂傚倷绶¢崰鏍偋閹惧磭鏆﹂柟鐑橆殕閸婄兘鎮楅悽鐧诲湱鏁幆褉鏀介柣妯虹仛閺嗏晛鈹戦纰卞殶闁瑰箍鍨硅灒濞撴凹鍨抽埀顒冨煐閵囧嫰寮村Δ鈧禍楣冩⒑閸濆嫮鐒跨紒鏌ョ畺楠炲棝寮崼顐f櫖濠电偞鍨堕敃鈺傚閿燂拷<<
12@gma联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4