ÊýѧģÐͿγÌÉè¼Æ¶þ

¿Î³ÌÉè¼ÆÃû³Æ£º Éè¼Æ¶þ£ºÊý¾ÝÄâºÏ Ö¸µ¼½Ìʦ£º ÕÅÀò ¿Î³ÌÉè¼ÆʱÊý£º 6 ¿Î³ÌÉè¼ÆÉ豸£º°²×°ÁËMatlab¡¢C++Èí¼þµÄ¼ÆËã»ú ¿Î³ÌÉè¼ÆÈÕÆÚ£º ʵÑéµØµã£º µÚÎå½Ìѧ¥±±902 ¿Î³ÌÉè¼ÆÄ¿µÄ£º

1. Á˽â×îС¶þ³ËÄâºÏµÄÔ­Àí£¬ÕÆÎÕÓÃMATLAB×÷×îС¶þ³ËÄâºÏµÄ·½·¨£» 2. ѧ»áÀûÓÃÇúÏßÄâºÏµÄ·½·¨½¨Á¢ÊýѧģÐÍ¡£

¿Î³ÌÉè¼Æ×¼±¸£º

1. ÔÚ¿ªÊ¼±¾ÊµÑé֮ǰ£¬Çë»Ø¹ËÏà¹ØÄÚÈÝ£»

2. ÐèҪһ̨׼±¸°²×°Windows XP Professional²Ù×÷ϵͳºÍ×°ÓÐÊýѧÈí¼þµÄ¼ÆËã»ú¡£

¿Î³ÌÉè¼ÆÄÚÈݼ°ÒªÇó

ÒªÇó£ºÉè¼Æ¹ý³Ì±ØÐë°üÀ¨ÎÊÌâµÄ¼òÒªÐðÊö¡¢ÎÊÌâ·ÖÎö¡¢ÊµÑé³ÌÐò¼°×¢ÊÍ¡¢ÊµÑéÊý¾Ý¼°½á¹û·ÖÎöºÍʵÑé½á

ÂÛ¼¸¸öÖ÷Òª²¿·Ö¡£

1. ÓÃÇÐÏ÷»ú´²½øÐнðÊôÆ·¼Ó¹¤Ê±£¬ÎªÁËÊʵ±µØµ÷Õû»ú´²£¬ÐèÒª²â¶¨µ¶¾ßµÄÄ¥ËðËٶȣ¬ÔÚÒ»¶¨µÄʱ¼ä²âÁ¿µ¶¾ßµÄºñ¶È£¬µÃÊý¾ÝÈç±íËùʾ£¬ÇëÑ¡ÓúÏÊʵĺ¯ÊýÀ´ÃèÊöÇÐÏ÷ʱ¼äÓ뵶¾ßºñ¶ÈµÄ¹Øϵ¡£ ÇÐÏ÷ʱ¼ät/h 0 1 29.1 9 26.8 2 29.8 10 26.5 3 28.1 11 26.3 4 28.0 12 26.1 5 27.7 13 25.7 6 27.5 14 25.3 7 27.2 15 24.8 µ¶¾ßºñ¶Èy/cm 30.0 ÇÐÏ÷ʱ¼ät/h 8 µ¶¾ßºñ¶Èy/cm 27.0

Ê×Ïȱ༭һ¸öMÎļþ£¬³ÌÐòÈçÏ£º

t=0:15;

y=[30.0 29.1 29.8 28.1 28.0 27.7 27.5 27.2 27.0 26.8 26.5 26.3 26.1 25.7 25.3 24.8]; A=polyfit(t,y,3); %A±íʾÎÒËùÄâºÏ³öµÄ·½³ÌµÄϵÊý

h=polyval(A,t); %h±íʾÄâºÏ³öµÄ·½³ÌËùÒªÇó½â³öµÄδ֪Êý£¬±¾ÌâÖм´ÊÇyµÄÖµ

plot(t,y,'*r',t,h,'k')%Ç°ÃæÊÇÓÃÒÑÖªÊý¾ÝÃèµÄµã£¬ºóÃæµÄÊÇÓÃÊý¾ÝÄâºÏ×ö³öµÄÏߣ¬×öÔÚÒ»Æð¿ÉÒԶԱȿ´Ð§¹û s=abs(y-h);%ÇóÎó²îµÄ¾ø¶ÔÖµ s=sum(s); %ÇóÎó²îµÄ¾ø¶ÔÖµÖ®ºÍ A=sum(abs(h));%ÇóÄâºÏµÄ¾ø¶ÔÖµÖ®ºÍ F=s/A*100 %ÇóÏà¶ÔÎó²î

3´ÎÇúÏßÄâºÏ³öµÄÏà¶ÔÎó²îÏà¶Ô½ÏС£¬ËùÒÔÎÒÑ¡ÔñÁËÈý´ÎÄâºÏ£ºÄâºÏÇúÏßͼÏñÈçÏÂ

3130292827262524051015

2. MalthusÈË¿ÚÖ¸ÊýÔö³¤Ä£ÐÍ Äê ÈË¿Ú£¨ÒÚ£© Äê ÈË¿Ú£¨ÒÚ£© Äê ÈË¿Ú£¨ÒÚ£© 1790 3.9 1870 38.6 1950 150.7 1800 5.3 1880 50.2 1960 179.3 1810 7.2 1890 62.9 1970 204.0 1820 9.6 1900 76.0 1980 226.5 1830 12.9 1910 92.0 1990 251.4 1840 17.1 1920 106.5 2000 281.4 1850 23.2 1930 123.2 1860 31.4 1940 131.7 ÓÃÒÔÉÏÊý¾Ý¼ìÑéÂí¶ûÈø˹ÈË¿ÚÖ¸ÊýÔö³¤Ä£ÐÍ£¬¸ù¾Ý¼ìÑé½á¹û½øÒ»²½ÌÖÂÛÂí¶ûÈø˹ÈË¿ÚÄ£Ð͵ĸĽø¡£ ÒòΪÒÑÖª¸ÃÇøÈË¿Ú³ÊÖ¸ÊýÔö³¤£¬ËùÒÔÓÃÖ¸ÊýÄâºÏ,³ÌÐò±àдÈçÏ£º

t= 1790:10:2000;

y=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92.0 106.5 123.2 131.7 150.7 179.3 204.0 226.5 251.4 281.4];

p=polyfit(t,log(y),1); %ÓÃÒ»´Î¶àÏîʽÄâºÏyµÄ¶ÔÊý m=p(1) %¼ÆËãÖ¸Êý²ÎÊýÖµ y0=exp(p(2)) %¼ÆË㺯ÊýϵÊý

y1=y0.*exp(m.*t); %ÈË¿ÚÔö³¤º¯Êý±í´ïʽ plot(t,y,'k+',t,y1,'b') ³ÌÐòÔËÐнá¹ûΪ£º

m =

0.0202 y0 =

1.1565e-015

ͼÐÎΪ£º

450400350300250200150100500175018001850190019502000

3£®¼Û¸ñÔ¤²â

ÃÀ¹ú¾É³µ¼Û¸ñµÄµ÷²éÊý¾Ý

xi 1 2615 2 1943 3 1494 4 1087 5 765 6 538 7 484 8 290 9 226 10 204 yi ·ÖÎöÓÃʲôÐÎʽµÄÇúÏßÀ´ÄâºÏÊý¾Ý£¬²¢Ô¤²âʹÓÃ4¡¢5ÄêºóµÄ¾É³µÆ½¾ù¼Û¸ñ´óÖÂΪ¶àÉÙ¡£ ¾É³µ¼Û¸ñ³Ê·ÇÏßÐÔϽµÇ÷ÊÆ£¬ÓÉÓÚÊý¾Ý½ÏÉÙ£¬¿ÉÒÔ×öÏßÐÔÄâºÏ£º Ê×Ïȱ༭һ¸öMÎļþ£¬³ÌÐòÈçÏ£º

t=1:10;

y=[2615 1943 1494 1087 765 538 484 290 226 204]; A=polyfit(t,y,3) %A±íʾÎÒËùÄâºÏ³öµÄ·½³ÌµÄϵÊý

y1=polyval(A,t); %±íʾÄâºÏ³öµÄ·½³ÌËùÒªÇó½â³öµÄδ֪Êý£¬±¾ÌâÖм´ÊÇyµÄÖµ£¬Õâ¸öËãʽ±íʾÄâºÏ·½³Ì plot(t,y,'*r',t,y1,'k')%Ç°ÃæÊÇÓÃÒÑÖªÊý¾ÝÃèµÄµã£¬ºóÃæµÄÊÇÓÃÊý¾ÝÄâºÏ×ö³öµÄÏߣ¬×öÔÚÒ»Æð¿ÉÒԶԱȿ´Ð§¹û

s=sum(abs(y-y1));%ÇóÎó²îµÄ¾ø¶ÔÖµÖ®ºÍ k=sum(abs(y1));%ÇóÄâºÏµÄ¾ø¶ÔÖµÖ®ºÍ F=s/k*100 %ÇóÏà¶ÔÎó²î

³ÌÐòÔËÐнá¹ûΪ£º

A = %Õâ¸öÊÇÄâºÏº¯ÊýµÄϵÊý 1.0e+003 *

-0.0027 0.0800 -0.8528 3.3801

F = %ÕâÊÇÈý´ÎÄâºÏº¯ÊýµÄÎó²îΪ°Ù·ÖÖ®2.5365 2.5365

30002500200015001000500012345678910

¸ù¾ÝÄâºÏϵÊý¿ÉÒÔд³öÄâºÏº¯ÊýΪ£ºy??2.7x?80x?852.8x?3380.1 Ôٱ༭һ¸öC++³ÌÐò¼´¿ÉÇó³ö4,5ÄêºóµÄ¾É³µ¼Û¸ñ£¬³ÌÐòÈçÏ£º #include using namespace std; int main() {

int x1=4,x2=5;

32

double y1,y2;

y1=-2.7*x1*x1*x1+80*x1*x1-852.8*x1+3380.1;

y2=-2.7*x2*x2*x2+80*x2*x2-852.8*x2+3380.1; }

cout<<\cout<<\return 0;

4£®ÓÃ×îС¶þ³Ë·¨ÇóÒ»¸öÐÎÈçy?a?bxµÄ¾­Ñ鹫ʽ£¬Êý¾ÝÈçÏ£º

2x y 19 19.0 25 32.3 31 49.0 38 73.3 44 98.8 Ê×Ïȱ༭һ¸öMÎļþ£¬³ÌÐòÈçÏ£º

x=[19 25 31 38 44];

y=[19.0 32.3 49.0 73.3 98.8];

fun1=inline('c(1)+c(2)*x.^2','c','x'); %ÓÃinlineº¯ÊýÈ·¶¨ÇúÏßÐÎʽΪy=a+b*x*x,cΪ²ÎÊý£¬xΪϵÊý, c=lsqcurvefit(fun1,[0,0],x,y) %ÓÃlsqcurvefitº¯ÊýÇó³ö´ý¶¨²ÎÊý y1=c(1)+c(2)*x.^2; %ÄâºÏº¯Êý±í´ïʽֵ plot(x,y,'k*',x,y1,'g')

³ÌÐòÔËÐнá¹ûΪ£º c =

0.5937 0.0506

¸ù¾ÝÄâºÏϵÊý¿ÉÒÔд³öÄâºÏº¯ÊýΪ£ºy=0.5937+0.0506*x*x

ÄâºÏÇúÏßΪ£º

10090807060504030201015202530354045

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ì滻Ϊ@) ËÕICP±¸20003344ºÅ-4