7.直径d=25mm的圆钢杆,受轴向拉力F=60kN作用
时,在标矩l=200mm的长度内伸长Δl=0.113mm;受外力偶矩Me=200N·m,的作用时,相距l=150mm的两横截面上的相对转角为φ=0.55o。试求钢材的E和G。
第四章 轴向拉伸与压缩
1. 拉杆或压杆如图所示。试用截面法求各杆指定截面的轴力,并画出各杆的轴力图。
解:
(1)分段计算轴力
杆件分为2段。用截面法取图示研究对象画受力图如图,列平衡方程分别求得: FN1=F(拉);FN2=-F(压)
(2)画轴力图。根据所求轴力画出轴力图如图所示。
2. 拉杆或压杆如图所示。试用截面法求各杆指定截面的轴力,并画出各杆的轴力图。
解:
(1)分段计算轴力
杆件分为3段。用截面法取图示研究对象画受力图如图,列平衡方程分别求得: FN1=F(拉);FN2=0;FN3=2F(拉)
(2)画轴力图。根据所求轴力画出轴力图如图所示。
3. 拉杆或压杆如图所示。试用截面法求各杆指定截面的轴力,并画出各杆的轴力图。
解:
(1)计算A端支座反力。由整体受力图建立平衡方程: ∑Fx=0, 2kN-4kN+6kN-FA=0
FA=4kN(←)
(2)分段计算轴力
杆件分为3段。用截面法取图示研究对象画受力图如图,列平衡方程分别求得: FN1=-2kN(压);FN2=2kN(拉);FN3=-4kN(压) (3)画轴力图。根据所求轴力画出轴力图如图所示。
4. 拉杆或压杆如图所示。试用截面法求各杆指定截面的轴力,并画出各杆的轴力图。
解:
(1)分段计算轴力
杆件分为3段。用截面法取图示研究对象画受力图如图,列平衡方程分别求得: FN1=-5kN(压); FN2=10kN(拉); FN3=-10kN(压) (2)画轴力图。根据所求轴力画出轴力图如图所示。
5. 圆截面钢杆长l=3m,直径d=25mm,两端受到F=100kN的轴向拉力作用时伸长Δl=2.5mm。试
计算钢杆横截面上的正应力σ和纵向线应变ε。
解:
2
2
6. 阶梯状直杆受力如图所示。已知AD段横截面面积AAD=1000mm,DB段横截面面积ADB=500mm,
材料的弹性模量E=200GPa。求该杆的总变形量ΔlAB。
解:由截面法可以计算出AC,CB段轴力FNAC=-50kN(压),FNCB=30kN(拉)。
7. 圆截面阶梯状杆件如图所示,受到F=150kN的轴向拉力作用。已知中间部分的直径d1=30mm,
两端部分直径为d2=50mm,整个杆件长度l=250mm,中间部分杆件长度l1=150mm,E=200GPa。试求:1)各部分横截面上的正应力σ;2)整个杆件的总伸长量。