一次函数提高篇(含答案)[1]1

一、选择题:

1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为( ) (A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+3 2.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过( ) (A)一象限 (B)二象限 (C)三象限 (D)四象限 3.直线y=-2x+4与两坐标轴围成的三角形的面积是( ) (A)4 (B)6 (C)8 (D)16 4.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为( ) (A)y1>y2 (B)y1=y2 (C)y1

5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,?则有一组a,b的取值,使得下列4个图中的一个为正确的是( )

6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第( )象限. (A)一 (B)二 (C)三 (D)四

7.一次函数y=kx+2经过点(1,1),那么这个一次函数( ) (A)y随x的增大而增大 (B)y随x的增大而减小 (C)图像经过原点 (D)图像不经过第二象限

8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 9.要得到y=-

33x-4的图像,可把直线y=-x( ). 22 (A)向左平移4个单位 (B)向右平移4个单位

(C)向上平移4个单位 (D)向下平移4个单位

10.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m的值为( ) (A)m>-

11 (B)m>5 (C)m=- (D)m=5 44 11.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是( ). (A)k<

111 (B)1 (D)k>1或k< 333 12.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,?这样的直线可以作

( )

(A)4条 (B)3条 (C)2条 (D)1条 13.已知abc≠0,而且

a?bb?cc?a??=p,那么直线y=px+p一定通过( ) cab (A)第一、二象限 (B)第二、三象限 (C)第三、四象限 (D)第一、四象限

14.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是( ) (A)-4

15.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符

合条件的点P共有( )

(A)1个 (B)2个 (C)3个 (D)4个

16.一次函数y=ax+b(a为整数)的图象过点(98,19),交x轴于(p,0),交y轴于(?0,

q),若p为质数,q为正整数,那么满足条件的一次函数的个数为( ) (A)0 (B)1 (C)2 (D)无数

17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k

的交点为整点时,k的值可以取( )

(A)2个 (B)4个 (C)6个 (D)8个

18.(2005年全国初中数学联赛初赛试题)在直角坐标系中,横坐标都是整数的点称为整

点,设k为整数,当直线y=x-3与y=kx+k的交点为整点时,k的值可以取( ) (A)2个 (B)4个 (C)6个 (D)8个

19.甲、乙二人在如图所示的斜坡AB上作往返跑训练.已知:甲上山的速度是a米/分,下山的速度是b米/分,(a

1a米/分,下山的速度是2b米/分.如2

果甲、乙二人同时从点A出发,时间为t(分),离开点A的路程为S(米),?那么下面图象中,大致表示甲、乙二人从点A出发后的时间t(分)与离开点A的路程S(米)?之间的函数关系的是( )

2

20.若k、b是一元二次方程x+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b中,

y随x的增大而减小,则一次函数的图像一定经过( ) (A)第1、2、4象限 (B)第1、2、3象限 (C)第2、3、4象限 (D)第1、3、4象限 二、填空题

1.已知一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________.

2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m的取值范围是

________.

3.某一次函数的图像经过点(-1,2),且函数y的值随x的增大而减小,请你写出一个

符合上述条件的函数关系式:_________.

4.已知直线y=-2x+m不经过第三象限,则m的取值范围是_________.

5.函数y=-3x+2的图像上存在点P,使得P?到x?轴的距离等于3,?则点P?的坐标为

__________.

6.过点P(8,2)且与直线y=x+1平行的一次函数解析式为_________. 7.y=

2x与y=-2x+3的图像的交点在第_________象限. 3 8.某公司规定一个退休职工每年可获得一份退休金,?金额与他工作的年数的算术平方根

成正比例,如果他多工作a年,他的退休金比原有的多p元,如果他多工作b年(b≠a),他的退休金比原来的多q元,那么他每年的退休金是(以a、b、p、?q?)表示______元.

9.若一次函数y=kx+b,当-3≤x≤1时,对应的y值为1≤y≤9,?则一次函数的解析式

为________.

10.(湖州市南浔区2005年初三数学竞赛试)设直线kx+(k+1)y-1=0(为正整数)与两

坐标所围成的图形的面积为Sk(k=1,2,3,……,2008),那么S1+S2+…+S2008=_______.

三、解答题

1.已知一次函数y=ax+b的图象经过点A(2,0)与B(0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y的值在-4≤y≤4范围内,求相应的y的值在什么范围内.

2.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1. (1)写出y与x之间的函数关系式;

(2)如果x的取值范围是1≤x≤4,求y的取值范围.

3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.?小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:

第一档 第二档 第三档 第四档 40.0 42.0 45.0 凳高x(cm) 37.0

桌高y(cm) 70.0 74.8 78.0 82.8 (1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;(不要求写出x的取值范围);(2)小明回家后,?测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.

4.小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)?求小明出发多长时间距家12千米?

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4