统计过程控制SPC教材
表面贴装的统计过程控制
面对今天竞争激烈的市场,质量既是确定的又是有差异的。说它是确定的,因为任何人不能为客户提供质量好的产品将很快从业界消失。但是,质量同样能够让你从竞争对手区分开。结构良好和实施质量管理系统可降低返修量和废品,达到节约成本和得到更低报价或零售价格。对许多公司来说,这就需要重新考虑现行的质量和实现质量的最佳方法。
v < /&N rwa-!e R|Z
%pZ0 Ka 旧的质量与新的质量
T{I3@'9T;{
WSnH Kj对许多公司来说,质量可简单地用以下方式表示:
&S G:% sG%v 1) 按工序制造产品; L 7o TSQ p} 2) 检查产品缺陷; 6wh P@ O ~iEY Z {; f\\ q7O9 bsBI 4) 检验返工产品; ]RmD--R s b'C ^GZ 5) 进入下一工序; - }4-j94[ dHT3s $} 6) 回到第一步,重复操作第1到第5步。 Z p:}7P d 这种方式可认为是质量控制的“检验法”,简单流程图如图1所示。对于利用这种最基本的质量控制系统的公司来说,它们以昂贵的费用:“检验”产品质量,但无助于改正引起产品缺陷的根本原因。某些公司会采用收集基本缺陷数据的方式,这是一种主要将缺陷的产生推回到工作人员的做法。这种错误概念来自认为工作人员通常是产生质量问题的起因。它不能找到产生缺陷的真正原因,而只在缺陷已经产生之后才检验出质量不好的产品。 ; 33 E4 dY}MA?i4t# 这种方式同样非常依赖于本身就缺少一致性和准确性的视觉检查。视沉检查经常会让漏检的缺陷进入各个装配过程,如果在测试中或检验时发现缺陷,则返修成本更可观,此时电路板可能要额处的拆卸才能找到有缺陷的子部件。更糟糕的是不合格的产品可能引起产品使用寿命缩短,及其返修成成本增加,并失去良好的客户信誉。无论在哪里检验出缺陷,返修和报废的材料都增加了产品的生产成本。 C df Nb\2 }0 Tg7* c] 更好的方法是采用统计过程控制(SPC)法实时监控在装配过程中最容易产生产品缺陷的关键部位。这里含有于用预防代替检验的概念,并且减少对视觉检查的依赖。视觉检查仍然在总体质量方法中起作用,以及经常有助于先行确定由现有过程导致的一贯性缺陷。这使得过程控制首 先注意到最能够实施“防犯于未然”的区域,最终检验员不再是查找缺陷的“警察”,而变为帮助工作人员防止缺陷发生的同事。 |[%%u+a 8 _;v2 f]5Cl 这种方法同样考虑到装配过程的各个方面,包括人力、机器、方法和工作环境,并且清楚地认识到人只是装配过程中众多资源之一。这个方法把防止不良质量放在首位,以便减少废品和浪费,最终达到生产率和收益的增加。(流程见图2) M_.&BD'k< R7 zCW mU Y pYd,oz 工业与质量历史回顾 3=q 5X)X- 19世纪初期,美国工业正在寻找提高生产率的方法来降低成本和增加收益,但没有想到质量对这种关系的冲击力。此时最广泛采用的是1911年泰勒(Fredrick Taylor)在他的著作《科学管理的原理》中提及的技巧。作为一名工业工程师和顾回,他以顾回身份服务于早期的工业家,如亨利·福特等人。他不断寻求提高机器和工人工作效率的方法,他使用的基本假定是大部分工人又笨又懒,金钱是他们主要的动力来源,因而在工人与管理之间应有严格的区分。他观察到工人会放慢他们的作业,害怕工作太有效而变成失业。他相信可以利用工人以金钱作为工作的动力来克服他们的惧怕和提高生产率。基于这种信念,他创立了“计件”工资制,对工人支付定量生产件数的基本工资,对超过定量的生产件数付给额外奖金。 i< 68P)F0} - )Yu;F5yx 现今还有一部分行业使用这种体制。工人被当作机器,他们很快变得疏远和不满足。产品的生产主要根据数据量而不是质量,管理采用“胡萝卜加大棒”的办法来降低成本和增加利润。 $ UGp o Sg aG? Z 到19世纪20年代,得益于休哈特(Walter Schewart)博士的工作和努力,质量变成公司降低成本的整体计划的组成部分。他作为西方电气公司工程部的著名科学家,被誉为统计过程控制之父。在1924年他计划了一种抽样图表,“设计用来指示在给定类型的缺陷部件中观察到的变化百分比,这是很有意义的,亦即指出对产品是否满意”。他认为产生缺陷的原因可分为“偶然原因”(生产过程中固有的可预测的变化,现在经常称为“普遍原因”)和“异常原因”(由特殊的不可预测的原因或事件引起的变化,现在经常称为“特殊原因”)。据此应该着重研究和消除异常原因,以便改进质量,但不必浪费资源去解决对整个过程和生产质量影响不大的偶然原因。这种方法亦可用来确定某一工序的固有能力,此时“控制界限”可作为一个工序的合格率的控制线。 q k . E \\m9! AOl 当贝尔实验室科学家将休哈特的概念付诸实施时,他的方法使几项废品降低了50%,和节省西方电气公司几百万美元的开销和材料。利用他的统计技术证明通过质量改进能够节约成本和增加利润,并且引起许多大型工业公司的注意。管理部门开始认识到人不能生产出工序所允许的更多的产品和更好的质量。在他1931年的著作《控制产品质量的经济检验》中全文述他的统计抽样方法的研究结果,并且这个结果仍然是现代 统计过程控制的基础。 $DPc p`Z! 28nu\B=p 一位西方电气公司的同事戴明(Edware Deming)在参加美国作战部和后来在日本讲授质量基本原理时,将休哈特的成果加以扩展。戴明在他的“管量的14项职责”中将统计过程控制和质量论述为管理哲学,并把它作为一种工具使工人参与搞好机构的活动。他采用这种统计工具和管理哲学去鼓励工人负责在他们控制下的工序的质量。休哈特的实践和戴明的哲学相结合至今还在不断提高美国工业的质量和生产率。 2P VNK B x1 3Z,- N H6fT [ E SPC的基础—各种控制图 ^\\ $9 过程控制图可分为两大类别:用于测量变量的图表和用于测量属性的图表。根据监控的过程和收集数据的来源,它们的用途各不相同。 Qo - *b tB``c 9b;, 变量图的实例:是监控焊膏的高度。板与板之间通常会出现高度的少量变化。比照控制允许值来跟踪这种变化可以确定工序是否在合格范围之内,或者在有缺陷的产品出现能迅速指出那些需要检查或改正的,因“特殊原因”而产生的事件。变量图如图3所示。 4} }!ak^5U FM 1dmOeE 属性图的实例:在测试操作中跟踪有缺陷的单元数目,计算在一个给定装配中的首轮通过的成品率。跟踪与控制范围有关的数据可以保证前面各工序的总体质量,或者在下一个缺陷产品产生之前指出需要检查和改正的不合的质量。属性图表如图4所示。 ~:\\ (nf1b eg1'p]\ 4aNv D1 u* 变量控制图 mnqD}Z 最常用的变量控制图表是X控制图和R控制图,它们经常一起使用。X控制图用来监控工序的位置或者工序的计量值,而R控制图用来监控工序的范围或者分布。在正常运用中,获取一个样本的多个读数,然后相加及求平均值后产生绘在图上的数据点。任何落在上控制限(UCL)或下控制限(LCL)之外的数据点表示由于特殊原因引起的不合格的工序变化,在进行下一步生产之前需要检查和改正。 3] q 3r w]1c#7qeC= 除了数据点超出UCL或LCL表示有特殊原因之外,还有其他规律可指出在没有超出UCL或LCL时存在的特殊原因。这些规律的依据是变量的统计概率,并可以对很快失控的工艺过程作出预先提示。这样就能够在生产出有缺陷产品之前进行检查和改正。一些常用的实例包括: -% 0X z !aS= 3P! ● 2个以上接近UCL或LCL的连接续点 6 LyLp = $O uvD ● 6个增加或降低的连续点 gre~A$J;C