※高等数学上册期末复习
一.填空题
e3x?cos2x3? 1.limx?0sin2x2?x2.曲线y?xe的拐点是 (2,2e)
?23.设f(x)在x?0处可导且f(0)?0,则lim4.曲线y?x?0f(x)? f?(0) x1?cos2x???x在(,1?)处的切线方程为 y?x?1 222x25.曲线y?2有垂直渐近线 x??1和水平渐近线 y?1
x?12xxxx6.设f(u)可导,y?sin[f(e)],则dy? sin2[f(e)]?f?(e)?edx
#7.?0exdx? 2(e2?1)
8.若f?(x0)??3,则lim9.若
h?04f(x0?h)?f(x0?3h)? ?12
h???1xpdx收敛,则p的范围是 p??1
#10.lim(x??2x?3x?1)? e 2x?11F(2x)?c 211.设
?f(x)dx?F(x)?c,则?f(2x)dx?
x2x2#12.设f(x)的一个原函数是xlnx,则?xf(x)dx? ?lnx?c
421?x2,x?0113.设f(x)??,则?f(x)dx? ?
?16?x,x?0#14.过点(1,3)且切线斜率为2x的曲线方程为 y?x2?1
sinx??,x?015.已知函数f(x)??x,则当x? ?时,函数f(x)是无穷小;当
??a,x?0a? 1时,函数f(x)在x?0处连续,否则x?0为函数的第 (一)类间断点。
16.已知
?f(x)dx?F(x)?c,则?11?x2f(arcsinx)dx? F(arcsinx)?c
17.当x?0时,(1?ax)?1与1?cosx是等价无穷小,则a?
1233 2?x3sint??0tdt#18.f(x)??,x?0是连续函数,则a? 1 3x?a,x?0?19.f(x)在[0,1]上连续,且f(1)?0,[f(x)]dx?1,则
0?121?xf(x)f(x)dx? ??021提示:
1?10xf(x)f?(x)dx??10xf(x)df(x)?xf2(x)10??f(x)d(xf(x))
011001???f(x)[f(x)?xf?(x)]dx???f2(x)dx??xf(x)f?(x)dx,移项便得。
0#20.?(x)??0xedx,则?(1)? (e?1),??(1)? e
df(x2)11?,则f?(x)? 21. dxx2x提示:f?(x)?2x?2xx21211?f?(x2)?2 x2x22.曲线y?f(x)在点(2,f(2))处的切线平行于直线y?3x?1,则f?(2)? 3
#23.设f(x)?arctanx,则x0?0,lim24.y?2lnx?0f(x?x0)?f(x0)1 ?
x2x0(1?x0)x?3?3的水平渐近线是 y??3 xxx25.函数y?x的导数为 x(lnx?1) 26.
???0xe?xdx?
21 2x2sinx)dx? 1 #27.??1(x?21?x128.广义积分
???111 dx?x32x21?1 29.f(x)?x的积分曲线中过(1,?)的那条曲线的方程 ______22#30.设s为曲线y?xlnx与x?1,x?e及x轴所围成的面积,则s? (e2?1)
31.
14?f?(2x)dx? 1f(2x)?c 232.曲线y?ln(e?)的全部渐近线为 y?1,x?0,x?1x1 e3? 10#33.曲线y?x2与y2?x所围图形绕y轴旋转一周所成的旋转体体积
34.点(0,1,1)到平面2x?y?2z?2?0的距离为
5 3??????????35.设向量a?2i?j?k,b?4i?2j??k,则当?? ?10时,a?b;当?? ??2,a//b。
?x2?y2?z2?1本题不作要求36.空间曲线?2在xoy平面上的投影曲线方程为 22?z?3(x?y)1??x2?y2??4 ??z?0???????37.设a?5,b?2,(a,b)?,则2a?3b? 219
3????38.设向量a?{2,1,?2},b?{3,4,?5},则a在b上的投影为 22
???????1?39.已知向量a?mi?5j?k和向量b?3i?j?nk共线,则m? 15,n? ?
5??40.设平行四边形二边为向量a?{1,?3,1},b?{2,?1,3},则其面积为 310
??31,cos??41.设点A(4,0,5),AB?214,向量AB的方向余弦为cos??, 1414cos???2,则B点坐标为 (10,2,1) 14?3x2?2y2?12本题不作要求42.曲线?绕y轴旋转一周所得的旋转曲面方程为
z?0?3x2?3z2?2y2?12
?????????43.设a?2,b?3,且a//b,则a?b? ?6,a?b? 0
?x?1,x?005?44.设f(x)??0,x?0,?f(x?1)dx=
?26?x2,x?0?#45.?(x)??0sin(x?t)dt,??(x)? sinx
x