最小公倍数 说课稿人教版五年级数学下册说课稿

最小公倍数 说课稿

一、教材分析:

我说课的内容是:人教版五年级下册第88~90页的《最小公倍数》一课。最小公倍数是在学生掌握了倍数、因数和公因数概念的基础上进行教学的,主要是为了以后学习通分做准备。在生活实际中也存在它自身的的意义和作用,这节课是一节以概念为本的教学。教材的编写意图是使抽象的数学知识与生活实际相联系,建立概念 ;用自己想到的方法尝试求两个数的最小公倍数,体现算法的多样化。

二、学情分析:

在不同的学校、班级进行前测,直接让不同认知水平的学生,用模拟的小长方形墙砖铺成正方形。在动手操作中,由于受密铺的影响,横拼竖摆,不但耗时过长,而且很难有效的构建公倍数内在的结构关系。因此在设计操作环节时,我搭建 “脚手架”。通过构建公倍数内在的结构关系和构建公倍数体系两个环节进行有效教学。成功搭建起教学内容与学生求知心理之间的桥梁。

三、教学目标:

(1)建立公倍数与最小公倍数的概念,会用集合图表示。掌握求100以内两个数最小公倍数的方法。

(2)通过动手操作、独立思考、合作探究、合作交流等方式,建立公倍数和最小公倍数的概念,培养发现问题、解决问题的能力。

(3)学会用数学的眼光观察生活、思考问题。积极参与到对数学问题的探究活动中。真真切切地体验到学习数学的快乐和价值。

教学重点:建立公倍数与最小公倍数的概念。

教学难点:掌握求100以内两个数最小公倍数的方法。 四、教学准备:

游戏卡片一套,模拟墙壁的平面图、模拟长方形墙砖多套,作业纸多张和多媒体课件一套。

五、教法和学法:

加点理念课堂上我采用尝试教学法和启发教学法。

学生通过动手操作、独立思考、合作探究、合作交流等方法进行学习。 六、教学过程:

这节课我按照下面五个环节进行教学:初步感知,建立表象;动手操作,建立概念;自主探究,归纳方法;实际应用,回归生活;全课总结,延伸课外。

(一)、初步感知,建立表象。

首先我从游戏中引入,我把枯燥的倍数复习设计成“抢倍数的游戏”。让学生初步感悟公倍数。(预设5-6分钟)

具体操作:

首先我手里拿着数字卡片,给学生说,今天老师给大家带来一个风靡我们全班的游戏—抢倍数游戏。面对全体同学讲一下规则:找两个同学上来,一个负责抢3的倍数,一个负责抢2的倍数。老师把卡片放到黑板上,过了抢的时间老师会把卡片收起来。最后抢的多的同学获胜。

然后把全班分成两大组,要求每组快速派一名代表上来。当两名学生上台进行游戏,其他学生做裁判共同参与。

接下来游戏,当第7张卡片出来的时候,两个同学会同时抢6这个数字。如果没有出现抢的局面。我会再出示12这个数字。学生很容易发现并说出:数字6是决定游戏胜负的关键,因为6既是2的倍数,又是3的倍数。

紧跟着追问:“为什么都来抢6这张卡片”。先让这两个代表说说,再让其他同学说说。

然后揭示出公倍数的概念。6既是2的倍数,又是3的倍数,也就是说6是3和2公有的倍数,我们把6叫做3和2的公倍数.(板书公倍数及概念。)

引导学生想想:那你还知道哪个数是3和2的公倍数?

学生答出12、18、24等数,并用这些数完整的表述出公倍数的概念。 及时表扬说的对,说的完整的同学。多让几个同学说说,并让同桌说说,强化公倍数的概念。

【设计理念:布鲁纳说过:“获得的知识如果没有完整的结构把他们连在一起,那是多半会遗忘的知识。”学习一个概念,需要组织起适当的认知结构,并使之成为内部知识网络的一部分。所以复习倍数的知识是理解公倍数、最小公倍数意义的关键。为了创设学生乐学的氛围,让学生从无意识的玩到有意识的关注6是3和2的公倍数,建立公倍数的概念。体现了认知的由浅入深的过程。】

(二)、动手操作,建立概念。

这一大环节是深刻理解公倍数,建立最小公倍数的重点内容,为此我分两个层次进行教学。

(1) 固定的正方形边长,选择长方形墙砖。(预设6-7分)

首先在前面通过游戏感悟公倍数的基础上,过渡到生活中。让学生体验公倍数能在生活中帮我们做什么。

(出示生活情境,课件显示。)

当学生明白题意后,要求学生利用模拟的长方形墙砖和墙壁正方形平面图,

分小组活动进行动手操作。学生通过摆一摆,画一画,得到不同的方案。 然后让学生汇报想法,谁来说说:你们小组选择的是长几分米,宽几分米的墙砖,怎样铺的?

在汇报方案时,学生都会选择长3分米,宽2分米的墙砖。让学生说说自己的想法。适时进行追问:“正方形墙面墙壁的边长所用墙砖的长和宽有什么关系?”

让学生自主发现:按照要求进行,所铺成的正方形边长必须是小长方形长和宽的公倍数这一结论。

这个时候多让几个学生说说这一结论。

其次我再追问:“大家为什么都不选择长5分米,宽3分米的墙砖?” 学生很容易答出,因为12不是5和3的公倍数。

最后我作课堂小结:“看来所铺正方形墙壁的边长必须是长方形墙砖长3分米,宽2分米的公倍数。”

【设计意图:这一环节搭建的“脚手架”过程,让学生直观的感受到公倍数的意义,这样由实际生活抽象出概念,既有利于培养学生的数学抽象能力,也有利揭示数学与现实世界的联系,帮助学生理解公倍数、最小公倍数概念的现实意义。】

(2) 用固定的长方形墙砖,铺多个的正方形。(预设6-7分)

从上个环节直接过渡到问题中。“同学们,真了不起,通过动手操作,获得很有价值的发现。(课件出示情境)用这种长3分米宽2分米的长方形墙砖,整块整块的铺,还可以铺成边长是多少分米的正方形?”

然后先让学生独立思考。当有的同学有想法后,请同学们拿出表格,填写完整。

让学生填出表格,空间想象能力好的学生能直接想到这些正方形的边长都是2和3的公倍数,想象不出来的,允许动手摆一摆,画一画。

其次把两个同学的表格用实物投影仪打出。让学生交流这样填的想法。 学生有可能答出:发现这些正方形的边长必须是所铺长方形墙砖长和宽的公倍数。及时表扬:“你能用今天所学的公倍数知识解决问题,这了不起”

还可能发现:其他公倍数都是6的倍数;最小的公倍数;公倍数是有很多个… 如果没有学生说出来,及时追问:“察这些公倍数,最小的是几?”学生很容易

说出6是公倍数中最小的。 揭示出:6是最小的公倍数。叫做3和2的最小公倍数。(板书:最小)

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4