线性代数课后习题答案

线性代数课后题详解

1.利用对角线法则计算下列三阶行列式:

第一章 行列式

相信自己加油

abc01?4?1; (2)bca (1)

cab?18321(3)

1aa21bb21cc2x; (4)

yx?yxx?yxy.

yx?y01?4?1?2?(?4)?3?0?(?1)?(?1)?1?1?8 解 注意看过程解答(1)

?183?0?1?3?2?(?1)?8?1?(?4)?(?1) =?24?8?16?4 =?4

21abcca?acb?bac?cba?bbb?aaa?ccc (2)bcab?3abc?a3?b3?c3

(3)

1aa21bb21c?bc2?ca2?ab2?ac2?ba2?cb2 c2?(a?b)(b?c)(c?a)

x(4)

yx?yxx?yxy

yx?y?x(x?y)y?yx(x?y)?(x?y)yx?y3?(x?y)3?x3 ?3xy(x?y)?y3?3x2y?3y2x?x3?y3?x3 ??2(x3?y3)

2.按自然数从小到大为标准次序,求下列各排列的逆序数:(1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 …

耐心成就大业

(2n?1) 2 4 … (2n);

(6)1 3 … (2n?1) (2n) (2n?2) … 2.

解(1)逆序数为0

(2)逆序数为4:4 1,4 3,4 2,3 2

(3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3

n(n?1)(5)逆序数为:

23 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… …

(2n?1) 2,(2n?1) 4,(2n?1) 6,…,(2n?1) (2n?2)

(n?1)个

(6)逆序数为n(n?1)

3 2 1个 5 2,5 4 2个 ……………… …

(2n?1) 2,(2n?1) 4,(2n?1) 6,…,(2n?1) (2n?2)

(n?1)个

4 2 1个 6 2,6 4 2个 ……………… …

(2n) 2,(2n) 4,(2n) 6,…,(2n) (2n?2) (n?1)个

3.写出四阶行列式中含有因子

a11a23的项.

解 由定义知,四阶行列式的一般项为

(?1)ta1p1a2p2a3p3a4p4,其中t为p1p2p3p4的逆序数.由于p1?1,p2?3

已固定,

p1p2p3p4只能形如13□□,即1324或1342.对应的t分别为

0?0?1?0?1或0?0?0?2?2

??a11a23a32a44和a11a23a34a42为所求.

1251

4.计算下列各行列式:

?4?1(1)??10??0??ab?(3)bd???bf解

多练习方能成大财

24??214?3?1202??; (2)??12320???17??5061?aacae???1b??cdde?; (4)??0?1cf?ef???0?01?1??; 2??2?00?10?? c1???1d?2?1002

2?141041(1)

1004=1101244?1202c2?c312520c4?7c310311700?1?1022?(?1)4?3 3?14=

4110?1102?2314c2?c3c1?12c3909010?2=0 141717

213?1(2)

12502r4?r2312

423611c42214?122314aede?ef21?c23?11250022r4?r13 0100?bc?c=adfbb=

423602 0214?122300ee?e02=0 00?abac?cd(3)bdbf=adfbce

cfc?1111?1111?14abcdef

0?ar2?1a100?1b10r1(4)

0?1c100?1d1?ab2?1?1=(?1)(?1)0=

5.证明:

1?abb?10c3?dc2a1c001

00ac01

?1d?1d1?abaad?1c1?cd0?10

(?1)(?1)3?21?abad=abcd?ab?cd?ad?1

?11?cda2(1)

ab1b21xaz?bxax?by=(a3?b3)yz2aa?b2b=(a?b)3; 1ax?byay?bzaz?bxyzxzx; y(2)

ay?bzaz?bxax?byay?bz

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4