高考分类汇编(圆锥曲线大题含答案)

学习必备 欢迎下载

, 0)、F2(1, 0),短轴的两个端1.(20XX年上海市春季高考数学试卷).已知椭圆C的两个焦点分别为F1(?1 B2(1)若?F1B1B2为等边三角形,求椭圆C的方程;(2)若椭圆C的短轴长为2,过点F2的点分别为B1、直线l与椭圆C相交于P、 Q两点,且F1P?FQ1,求直线l的方程.

x2y22.(20XX年高考四川卷(理))已知椭圆C:2?2?1,(a?b?0)的两个焦点分别为F1(?1,0),F2(1,0),

ab41且椭圆C经过点P(,).(Ⅰ)求椭圆C的离心率;(Ⅱ)设过点A(0,2)的直线l与椭圆C交于M、N33211??两点,点Q是线段MN上的点,且,求点Q的轨迹方程. 222|AQ||AM||AN|

xy3.(20XX年普通高等学校招生统一考试山东数学(理)试题(含答案))椭圆C:2?2?1(a?b?0)的

ab左、右焦点分别是F1,F2,离心率为223,过F1且垂直于x轴的直线被椭圆C截得的线段长为1. 2(Ⅰ)求椭圆C的方程; (Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设?F1PF2的角平分线PM交C 的长轴于点M(m,0),求m的取值范围;(Ⅲ)在(Ⅱ)的条件下,过P点作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k?0,试证明

11?为定值,并求出这个定值. kk1kk2

学习必备 欢迎下载

4.(20XX年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版))如图,点P(0,?1)是椭圆

x2y2C1:2?2?1(a?b?0)的一个顶点,C1的长轴是圆C2:x2?y2?4的直径.l1,l2是过点P且互相

ab垂直的两条直线,其中l1交圆C2于两点,l2交椭圆C1于另一点D (1)求椭圆C1的方程; (2)求?ABD面积取最大值时直线l1的方程.

y l1 D O P A (第21题图)

l2 B x

5.(20XX年普通高等学校招生统一考试重庆数学(理)试题(含答案))如题(21)图,椭圆的中心为原点O,

长轴在x轴上,离心率e?2,过左焦点F1作x轴的垂线交椭圆于A,A?两点,AA??4. 2(1)求该椭圆的标准方程;(2)取垂直于x轴的直线与椭圆相交于不同的两点P,P?,过P,P?作圆心为

Q的圆,使椭圆上的其余点均在圆Q外.若PQ?P?Q,求圆Q的标准方程.

学习必备 欢迎下载

x2y2?1的焦6.(20XX年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))设椭圆E:2?2a1?a点在x轴上(Ⅰ)若椭圆E的焦距为1,求椭圆E的方程;

(Ⅱ)设F1,F2分别是椭圆的左、右焦点,P为椭圆E上的第一象限内的点,直线F2P交y轴与点Q,并且F1P?F1Q,证明:当a变化时,点p在某定直线上. 解:

7.(20XX年高考新课标1(理))已知圆M:(x?1)2?y2?1,圆N:(x?1)2?y2?9,动圆P与M外切

并且与圆N内切,圆心P的轨迹为曲线 C.

(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|. 由已知得圆M的圆心为M(-1,0),半径r1=1,圆N的圆心为N(1,0),半径r2=3. 设动圆P的圆心为P(x,y),半径为R.

x2y28.(20XX年普通高等学校招生统一考试天津数学(理)试题(含答案))设椭圆2?2?1(a?b?0)的左焦

ab点为F, 离心率为343, 过点F且与x轴垂直的直线被椭圆截得的线段长为. 33(Ⅰ) 求椭圆的方程;

(Ⅱ) 设A, B分别为椭圆的左右顶点, 过点F且斜率为k的直线与椭圆交于C, D两点. 若AC·DB?AD·CB?8, 求k的值.

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4