利息理论第二章年金部分习题参考答案

RRa25 0.030.03a10 0.03(12)?0.03=100000(元),解得R=5665.30414a15 0.05?10?0.03?(R?P)??0.05?1.03?100000(元)(12)(12)0.030.05查表得:a25 0.03=17.41315,a10 0.03=8.53020,a15 0.05=10.37966上式经整理为:0.05解得:P?66.08解法二:

根据题意,令i0=12[(1+0.03)-1], i1112

?10(R?P)?a15 0.05(12)?0.05?1.030.03?R(a25 0.03?a10 0.03)(12)0.03?12[(1+0.05)-1],

112设每月末领取R元,每月年金增加额为P,有:

令i0=12[(1+0.03)-1], i1?12[(1+0.05)-1],Ra300 i0?100000Ra120 i0?(R?P)a180 i1(1?0.03)a120 i0a300 i0

47. 根据题意,有

?10112112?100000100000?1

?a180 i1a300 i0(1?0.03)?10?Pa180 i1(1?0.03)?10解得:P?66.08?t?(1?t)?1a(t)?e?0t?rdr?e?0t(1?r)?1dr?1?t?(1?i)tn0结合连续变化年金的现值公式V(0)??f(t)vtdt则延期一年连续变化年金的现值为:V142t142?t142?1

(0)??1(t?1)vdr??1(t?1)(1?i)dr??1??1414(t2?1)(1?t)?1dr?(1212t?t)?84.51(t?1)a(t)dr

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4