Eviews应用时间序列分析实验手册

图4:序列相关图

4.根据自相关图和偏自相关图的性质确定模型类型和阶数

如果样本(偏)自相关系数在最初的d阶明显大于两倍标准差范围,而后几乎95%的自相关系数都落在2倍标准差的范围以内,而且通常由非零自相关系数衰减为小值波动的过程非常突然。这时,通常视为(偏)自相关系数截尾。截尾阶数为d。 本例:

? 自相关图显示延迟3阶之后,自相关系数全部衰减到2倍标准差范围内波动,这表

明序列明显地短期相关。但序列由显著非零的相关系数衰减为小值波动的过程相当连续,相当缓慢,该自相关系数可视为不截尾

? 偏自相关图显示除了延迟1阶的偏自相关系数显著大于2倍标准差之外,其它的偏

自相关系数都在2倍标准差范围内作小值随机波动,而且由非零相关系数衰减为小值波动的过程非常突然,所以该偏自相关系数可视为一阶截尾 ? 所以可以考虑拟合模型为AR(1) 自相关系数 拖尾 Q阶截尾 拖尾 偏相关系数 P阶截尾 拖尾 拖尾 模型定阶 AR(p)模型 MA(q)模型 ARMA(P,Q)模型 具体判别什么模型看书58到62的图例。

AR模型:Xt???:

1?t2P1?AR(1)*B?AR(2)*B???AR(P)*B1?MA(1)*B?MA(2)*B???MA(q)*B?t2P1?AR(1)*B?AR(2)*B???AR(P)*B2qMA模型:(1?MA(1)*B?MA(2)*B2???MA(q)*Bq)?tXt???ARMA模型:Xt???

(其中模型中的ar(1)??MA(1)表示的是求出来的系数。?就是常数项) 13

二、模型参数估计

根据相关图模型确定为AR(1),建立模型估计参数

在ESTIMATE中按顺序输入变量cx c cx(-1)或者cx c ar(1) 选择LS参数估计方法,查看输出结果,看参数显著性,该例中两个参数都显著。

细心的同学可能发现两个模型的C取值不同,这是因为前一个模型的C为截距项;后者的C则为序列期望值,两个常数的含义不同。

图1:建立模型

14

图2:输入模型中变量,选择参数估计方法

图3:参数估计结果

图4:建立模型

15

图5:输入模型中变量,选择参数估计方法

图6:参数估计结果

1AR模型:?81.32034??t

x1?0.703332Bt

16

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4