2017-2018学年(新课标)北师大版高中数学必修五《等差数列的前n项和》课时练习1及解析

(新课标)2017-2018学年北师大版高中数学必修五

2.2 等差数列的前n项和(二)

课时目标 1.熟练掌握等差数列前n项和的性质,并能灵活运用.2.掌握等差数列前n项和的最值问题.3.理解an与Sn的关系,能根据Sn求an.

1.前n项和Sn与an之间的关系

对任意数列{an},Sn是前n项和,Sn与an的关系可以表示为

? (n=1),?an=?

?? (n≥2).

2.等差数列前n项和公式

Sn=____________=______________. 3.等差数列前n项和的最值 (1)在等差数列{an}中

当a1>0,d<0时,Sn有________值,使Sn取到最值的n可由不等式组________确定; 当a1<0,d>0时,Sn有________值,使Sn取到最值的n可由不等式组____________确定.

d?d?(2)因为Sn=n2+?a1-?n,若d≠0,则从二次函数的角度看:当d>0时,Sn有________

2?2?值;当d<0时,Sn有________值;且n取最接近对称轴的自然数时,Sn取到最值. 一个有用的结论:

若Sn=an2+bn,则数列{an}是等差数列.反之亦然.

一、选择题

1.已知数列{an}的前n项和Sn=n2,则an等于( ) A.n B.n2 C.2n+1 D.2n-1

2.数列{an}为等差数列,它的前n项和为Sn,若Sn=(n+1)2+λ,则λ的值是( )

A.-2 B.-1 C.0 D.1 3.已知数列{an}的前n项和Sn=n2-9n,第k项满足5

4.设Sn是等差数列{an}的前n项和,若=,则等于( )

S63S12

3111

A. B. C. D. 10389a55S9

5.设Sn是等差数列{an}的前n项和,若=,则等于( )

a39S5A.1 B.-1 1

C.2 D.

2

6.设{an}是等差数列,Sn是其前n项和,且S5S8,则下列结论错误的是( ) A.d<0 B.a7=0 C.S9>S5

D.S6与S7均为Sn的最大值

二、填空题

7.数列{an}的前n项和为Sn,且Sn=n2-n,(n∈N+),则通项an=________. 8.在等差数列{an}中,a1=25,S9=S17,则前n项和Sn的最大值是________. 9.在等差数列{an}中,已知前三项和为15,最后三项和为78,所有项和为155,则项数n=________.

10.等差数列{an}中,a1<0,S9=S12,该数列在n=k时,前n项和Sn取到最小值,则k的值是________.

三、解答题

11.设等差数列{an}满足a3=5,a10=-9. (1)求{an}的通项公式;

(2)求{an}的前n项和Sn及使得Sn最大的序号n的值.

12.已知等差数列{an}中,记Sn是它的前n项和,若S2=16,S4=24,求数列{|an|}的前n项和Tn.

能力提升

13.数列{an}的前n项和Sn=3n-2n2 (n∈N+),则当n≥2时,下列不等式成立的是( )

A.Sn>na1>nan B.Sn>nan>na1 C.na1>Sn>nan D.nan>Sn>na1 14.设等差数列{an}的前n项和为Sn,已知a3=12,且S12>0,S13<0. (1)求公差d的范围;

(2)问前几项的和最大,并说明理由.

1.公式an=Sn-Sn-1并非对所有的n∈N+都成立,而只对n≥2的正整数才成立.由

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4