一、教学目标
§1集合的含义及其表示(一)
二、教学重、难点
三、新课导航 1.问题展示
(1)集合的含义:一般地,一定范围内某些_________、_________对象的_________构成一个集合。集合中的 称为该集合的元素,简称______。 集合的元素的性质: 、 和 (2)集合、元素的记法
集合的记法 ; 元素的记法 。
元素与集合的关系有两种:
①如果a是集合A的元素,那么就记作 ,读作 “ ” ②如果a不是集合A的元素,那么就记作 ,读作 “ ”
(3)常用数集的记法:自然数集记作______,正整数集记作 ,整数集记作 ,有理数集记作 ,实数集记作 。
(4)集合的分类:按照集合中元素的个数可分为 、 、 ,其中,不含任何元素的集合称为 ,记作 。 2.基础测评
(1)下列叙述能否构成集合,是集合说明是有限集还是无限集
①黄海中鲜美的鱼; ②著名的数学家;
③中国的四大河流; ④直线y?4x?1上所有点。
(2)由实数1、2、3、1组成的集合有几个元素?答: 个;
(3)对于 ①32?R;②3?Q;③0?N;④0?? , 其中正确的个数是________; 四、合作探究
活动1 判断下列叙述能否构成集合
(1)高一(1)班个子较高的同学; (2)高二(2)班成绩一般的同学;
(3)大于等于3的所有自然数; (4)函数y?
活动2 求方程x?4x?3?0所有实数解所组成的集合的元素。
活动3 集合A中有且仅有3个元素1,2,a?4,问:字母a有什么范围要求。
21图象上所有的点。 x
活动4 关于x的方程x?ax?2?0的解组成的集合中元素有且仅有一个,求实数a 的取值范围。
变式1:关于x的方程ax?3x?2?0的解组成的集合中元素只有一个,求实数a的取值范围。
变式2:关于x的方程ax?3x?2?0的解组成的集合中元素至少有一个,求实数a的取值范围。
五、提高拓展
1.用符号?或?填空:已知集合A中有且仅有一个元素?,则?_________A; 2.由实数x,?x,|x|,x2,?3x3所组成的集合里最多含有________个元素;
六、知识网点 七、反思
2222019-2020年高一数学苏教版必修一教学案 1集合的
含义及其表示(一)
一、填空题
1.0是?中的元素吗?答:____________;0是N中的元素吗?答:_____________; 0是Q中的元素吗?答:_____________;
2.下列给出的对象中,表示集合的序号是________________ (1)一切很大的数; (2)绝对值等于本身的数; (3)聪明的人; (4)方程x?9的实数解.
23.用符号?或?填空
23?_____Q;32_______N; ?_______R; 3.14_____Q ; 0____N 74.已知集合M由所有平行四边形组成,p表示某个矩形,q表示某个梯形,则p____M,; q_____M(用符号?或?填空)
5.若关于x的方程ax?2x?a?0,a?R组成的集合中有且仅有一个元素,则a的取值范围是_______________;
6.设a,b都是非零实数,代数式
2abab??可能取到的值组成的集合有|a||b||ab|_______________个元素;
二、解答题
7.指出下列集合是有限集还是无限集 (1)由4与6的公倍数组成的集合; (2)所有正偶数组成的集合; (3)方程x?2?0的解的集合。
2 2k,求实数k的取值范围。 8.已知集合A共含有两个元素k?k,
9.设集合M的元素是自然数,且满足条件:如果x?M,那么8?x?M.试回答下问题:
(1)若集合M只有一个元素,求出该元素;
2