北师大版数学九年级上册 第二章 一元二次方程 2.6 应用一元二次方程
2.6.1 利用一元二次方程解决几何问题 同步课时练习题
1. 用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一边长为x米,则根据题意可列出关于x的方程为( ) A.x(5+x)=6 B.x(5-x)=6 C.x(10-x)=6 D.x(10-2x)=6
2. 公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1 m,另一边减少了2 m,剩余空地的面积为18 m2,求原正方形空地的边长.设原正方形空地的边长为x m,则可列方程为( ) A.(x+1)(x+2)=18 B.x2-3x+16=0 C.(x-1)(x-2)=18 D.x2+3x+16=0
3. 如图,AB⊥BC,AB=10 cm,BC=8 cm,一只蝉从C沿CB的方向以每秒1 cm的速度爬行,蝉开始爬行的同时,一只螳螂由A点沿AB方向以每秒2 cm的速度爬行,当螳螂和蝉爬行x秒后,它们分别到达了M,N的位置,此时△MNB的面积恰好为24 cm2,由题意可列方程( )
A.2x·x=24 B.(10-2x)(8-x)=24 C.(10-x)(8-2x)=24 D.(10-2x)(8-x)=48
4. 小明把一张边长为10 cm的正方形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(如图).如果这个无盖的长方体底面积为81 cm2,那么剪去的正方形边长为( )
A.2 cm B.1 cm C.0.5 cm D.0.5 cm或9.5 cm
5. 一块矩形菜地的面积是120 cm2,如果它的长减少2 cm,那么菜地就变成正
第 1 页
方形,则原菜地的长是____cm.
6. 已知小明与小亮两人在同一地点,若小明向北直走160 m,再向东直走80 m,可到购物中心,则小亮向西直走____m后,他与购物中心的距离为340 m. 7. 现有一块长80 cm,宽60 cm的矩形钢片,将它的四个角各剪去一个边长为x cm的小正方形,做成一个底面积为1 500 cm2的无盖的长方体盒子,根据题意列方程,化简可得______________________________.
8. 如图,在Rt△ABC中,∠B=90°,AB=6 cm,BC=8 cm,点P从A点开始沿AB边向点B以1 cm/s的速度移动,点Q从B点开始沿BC边向点C以2 cm/s的速度移动,则点P,Q分别从点A,B同时出发,经过_______秒钟,使△PBQ的面积等于8 cm2.
9. 已知菱形的周长为40,两对角线之比为3∶4,则两对角线的长分别为________________.
10. 如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(x2+17)cm,正六边形的边长为(x2+2x)cm(其中x>0).求这两段铁丝的总长.
11. 为响应市委市政府提出的建设“绿色城市”的号召,我市某单位准备将院内一块长30 m,宽20 m的长方形空地,建成一个矩形花园.要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532 m2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)
12. 如图,两艘船同时从A点出发,一艘船以15海里/时的速度向东北方向航行,另一艘船以20海里/时的速度向东南方向航行,那么几小时后两船正好相距100海里?
第 2 页
13. 如图,要建造一个四边形花圃ABCD,要求AD边靠墙,CD⊥AD,AD∥BC,AB∶CD=5∶4,且三边的总长为20 m.设AB的长为5x m. (1)请求AD的长;(用含字母x的式子表示)
(2)若该花圃的面积为50 m2,且周长不大于30 m,求AB的长.
14. 要在一块长52 m,宽48 m的矩形绿地上,修建同样宽的两条互相垂直的甬路,下面分别是小亮和小颖的设计方案.
小亮设计的方案如图①所示,甬路宽度均为x m,剩余的四块绿地面积共2300 m2. 小颖设计的方案如图②所示,BC=HE=x,AB∥CD,HG∥EF,AB⊥EF,∠1=60°. (1)求小亮设计方案中甬路的宽度x;
(2)求小颖设计方案中四块绿地的总面积.(友情提示:小颖设计方案中的x与小亮设计方案中的x取值相同)
15. 某工厂拟建一座平面图形为矩形且面积为200平方米的三级污水处理池(如图所示).由于地形限制,三级污水处理池的长、宽都不能超过16米.如果池的外围墙的建造单价为每米400元,中间两条隔墙的建造单价为每米300元,池底的建造单价为每平方米80元(墙的厚度忽略不计).当三级污水处理池的总造价为47 200元时,求池长x.
16. 小明和同桌小聪在课后复习时,对练习册“目标与评定”中的一道思考题,进行了认真地探索.
【思考题】如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?
(1)请你将小明对“思考题”的解答补充完整: 解:设点B将向外移动x米,即BB1=x,
第 3 页