一元一次方程应用题专题练习
一、年龄问题
1.小明今年6年,他爷爷今年72岁,问多少年之后小明年龄是他爷爷年龄的解:设x年后小明的年龄是爷爷的
1倍? 41倍,根据题意得方程为 : 4二、数字问题
2.一个两位数它的个位数字比十位数字大3,那么这个两位数可以表示为什么?
如果把个位数字和十位数字对调,新的两位数可以表示为什么?(添表格并完成解答过程)
解:设这个数的十位数字是x,
个位 十位 表示为 根据题意得
原数
解方程得: 对调后的新数 答
3.两个连续奇数的和为156,求这两个奇数,设最小的数为x,列方程得 4.一个五位数最高位上的数字是2,如果把这个数字移到个位数字的右边,那么所得的数比原来的数的3倍多489,求原数。
5.将连续的奇数1,3,5,7,9…,排成如下的数表:
(1)十字框中的五个数的平均数与15有什么关系?
(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.
1 357911 13 2123 3133
151719252729353739
三、日历时钟问题
6、你能在日历中圈出2×2的一个正方形,使得圈出的4个数之和是77吗? 如果能,求出这四天分别是几号?如果不能,请说明理由.
7、在6点和7点间,时钟分针和时针重合?
四、几何等量变化问题(等周长变化,等体积变化)
常用公式:三角行面积= ,正方形面积 圆的面积 , 梯形面积
矩形面积 柱体体积 椎体体积 球体体积
8、已知一个用铁丝折成的长方形,它的长为9cm,宽为6cm,把它重新折成一个宽为5cm的长方形,
则新的长方形的宽是多少?
设新长方形长为xcm,列方程为
2
9、将棱长为20cm的正方体铁块没入盛水量筒中,已知量筒底面积为12cm,问量筒中水面升高了多少cm?
10、如图所示,两个长方形重叠部分的面积相当于大长方形面积的六分之一,相当于小长方
2
形面积的四分之一,阴影部分的面积为224cm,求重叠部分面积。
11、如图是两个圆柱体的容器,它们的半径分别是4cm和8cm,高分别为16cm和10cm,先在第一个容器中倒满水,然后将其全部倒入第二个容器中。(1)问倒完后,第二个容器水面的高度是多少?
(2)如右图把容器1口朝上插入容器2水位又升高多少? 容器2 容器1
商品利润×100%
商品进价12、 一只钢笔原价30元,现打8折出售,现售价是 元;如果这支钢笔的成本价
五、打折销售:公式:利润=售出价-进货价(成本价) 利润率=
为12元,那么不打折前商家每支可以获利 元,打折之后,商家每支还可以获利 元
13、 一件服装标价200元,①按标价的8折销售,仍可获利20元,该服装的进价是 元;
②按标价的8折销售,仍可获利10%,该服装的标价是 元
15、一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是______元. 设进价x元,根据题意列方程得
16、服装店将某种服装按成本提高40%标价,又以八折优惠卖出,每件仍获利15元,则每
件的成本为_________.
17、某件商品9折降价销售后每件商品售价为a元,则该商品每件原价为________。
18、一种药物涨价25%的价格是50元,那么涨价前的价格x满足的方程是____________。 18、某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,些时仍可获利10%,此商品的进价为______.
19、某商场出售某种文具,每件可盈利2元,为支援贫困山区的小朋友,按7折收给某山区学校,结果每件盈利0.20元。问该文具的进价是每件多少元?
20、杉杉打火机厂生产某种型号的打火机.每只的成本为2元,毛利率为25%.工厂通过改进工艺,降低了成本,在售价不变的情况下,毛利率增加了15%.则这种打火机每只的
售价?成本?10000成本降低了 .(精确到0.01元.毛利率=成本)
21、某商品进价1500元,提高40%后标价,若打折销售,使其利润率为20%,则此商品是按几折销售的?
23、某种商品的市场需求量D(千件)与单价
117D?P??03p(元/件)服从需求关系: 3.问:
(1)当单价为4元时,市场需求量是多少?
(2)若单价在4元基础上又涨价1元,则需求量发生了怎样的变化?
24、八一体育馆设计一个由相同的正方体搭成的标志物(如图所示),每个正方体的棱长为
1米,其暴露在外面的面(不包括最底层的面)用五夹板钉制而成,然后刷漆。每张五夹板可做两个面,每平方米用漆500克.
(1)建材商店将一张五夹板按成本价提高40%后标价,又以8折优惠卖出,结果每
张仍获利4.8元(五夹板必须整张购买):
(2)油漆店开展“满100送20,多买多送的酬宾活动”,所购漆的售价为每千克34
元.试问购买五夹板和油漆共需多少钱?