浙江省杭州市2018-2019学年高三数学一模试卷(文科) Word版含解析

2018-2019学年浙江省杭州市高考数学一模试卷(文科)

一、选择题(共8小题,每小题5分,满分40分)最新试卷十年寒窗苦,踏上高考路,心态放平和,信心要十足,面对考试卷,下笔最新试卷多少汗水曾洒下,多少期待曾播种,终是在高考交卷的一刹尘埃落地,多少记忆梦中惦记,多少青春付与流水,人生,总有一次这样的成败,才算长大。 如有神,短信送祝福,愿你能高中,马到功自成,金榜定题名。

1.设集合A={x|x2﹣2x≥0},B={x|﹣1<x<2},则A∩B=( ) A.{x|0≤x≤2} B.{x|0<x<2} C.{x|﹣1≤x<0} D.{x|﹣1<x≤0} 2.若sinx=

,则cos2x=( ) C.﹣

D.

A.﹣ B.

3.某几何体的三视图如图所示(单位:cm),则该几何体的侧面PAB的面积是( )

A. B.2 C. D.

4.:“?x0∈R,x0>sinx0”的否定是( ) A.?x∈R,x≤sinx B.?x∈R,x>sinx

C.?x0∈R,x0<sinx0 D.?x0∈R,x0≤sinx0 5.设函数f(x)=|lnx|,满足f(a)=f(b)(a≠b),则(注:选项中的e为自然对数的底数)( ) A.ab=ex

B.ab=e C.ab=

D.ab=1

6.设抛物线y=ax2+bx+c(a>0)与x轴有两个交点A,B,顶点为C,设△=b2﹣4ac,∠ACB=θ,则cosθ=( ) A.

B.

C.

D.

7.在Rt△ABC中,∠C是直角,CA=4,CB=3,△ABC的内切圆交CA,CB于点D,E,

点P是图中阴影区域内的一点(不包含边界).若=x+y,则x+y的值可以是( )

A.1 B.2 C.4 D.8

8.设U为全集,对集合A,B定义运算“*”,A*B=?U(A∩B),若X,Y,Z为三个集合,则(X*Y)*Z=( )

A.B.C.(X∪Y)∩?UZ (X∩Y)∪?UZ (?uX∪?UY)∩Z D.(?UX∩?UY)∪Z

二、填空题(共7小题,每小题4分,满分36分) 9.设ln2=a,ln3=b,则ea+eb= .(其中e为自然对数的底数) 10.若函数f(x)=

,则f(﹣1)= ;不等式f(x)<4的解集

是 .

11.设直线l1:mx﹣(m﹣1)y﹣1=0(m∈R),则直线l1恒过定点 ;若直线l1为圆x2+y2+2y﹣3=0的一条对称轴,则实数m= . 12.设实数x,y满足不等式组

,若z=2x+y,则z的最大值等于 ,z

的最小值等于 .

13.如图,△ABC是等腰直角三角形,AB=AC,∠BCD=90°,且,将△ABC沿BC的边翻折,设点A在平面BCD上的射影为点M,若点M在△BCD内部(含边界),则点M的轨迹的最大长度等于 ;在翻折过程中,当点M位于线段BD上时,直线AB和CD所成的角的余弦值等于 .

14.设x,y∈R,x2+2y2+xy=1,则2x+y的最小值等于 . 15.若点P在曲线C1:

上,点Q在曲线C2:(x﹣5)2+y2=1上,点R在曲线

C3:(x+5)2+y2=1上,则|PQ|﹣|PR|的最大值是 .

三、解答题(共5小题,满分74分)

16.在△ABC中,A,B,C所对的边分别为a,b,c,(1)求C; (2)若

,求a,b,c.

17.BC∥AD,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,四边形ABCD为直角梯形,∠ADC=90°,BC=CD=AD=1,PA=PD,E,F分别为线段AD,PC的中点. (1)求证:PA∥平面BEF;

(2)若直线PC与AB所成的角为45°,求线段PE的长.

18.设数列{an}满足a1=,an+1=an2+an+1(n∈N*). (1)证明:

≥3;

(2)设数列{

}的前n项和为Sn,证明:Sn<3.

19.设点A,B分别是x,y轴上的两个动点,AB=1,若. (1)求点C的轨迹Γ;

(2)已知直线l:x+4y﹣2=0,过点D(2,2)作直线m交轨迹Γ于不同的两点E,F,交直线l于点K.问

+

的值是否为定值,请说明理由.

20.设函数f(x)=(x﹣1)?|x﹣a|(a∈R).

(1)当a=2且x≥0时,关于x的方程f(x)=kx﹣有且仅有三个不同的实根x1,x2,x3,若t=max|x1,x2,x3|,求实数t的取值范围

(2)当a∈(﹣1,)时,若关于x的方程f(x)=2x﹣a有且仅有三个不同的实根x1,x2,x3求x1+x2+x3的取值范围.

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4