大兴区2015-2016学年度第二学期期末检测试卷
初二数学
1.本试卷共4页,共三道大题,29道小题,满分100分.考试时间120分钟. 考生须知2.在试卷和答题卡上准确填写班级、姓名和考号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡和草稿纸一并交回. 一、选择题(本题共10道小题,每题3分,共30分)
在每道小题给出的四个备选答案中,只有一个是符合题目要求的,请将所选答案前的字母按规定要求涂在答题纸第1-10题的相应位置上.
1.在平面直角坐标系中,点M(-4,3)所在的象限是
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.我国一些银行的行标设计都融入了中国古代钱币的图案.下图所示是我国四大银行的行标图案,其中是轴对称图形而不是中心对称图形的是
A. B. C. D.
3.下列各曲线表示的y与x的关系中,y不是x的函数的是
4.若一个多边形的内角和为540°,则这个多边形的边数为 A.4 B. 5 C. 6 D.7
5.在下列图形性质中,平行四边形不一定具备的是 A.两组对边分别相等 B.两组对边分别平行 C.对角线相等D.对角线互相平分
6.下列关于正比例函数y=3x的说法中,正确的是 A.当x=3时,y=1B.它的图象是一条过原点的直线 C. y随x的增大而减小D.它的图象经过第二、四象限
7.为了备战2016年里约奥运会,中国射击队正在积极训练.甲、乙两名运动员在相同的条件下,各射击10次.经过计算,甲、乙两人成绩的平均数均是9.5环,甲的成绩方差是0.125,乙的成绩的方差是0.85,那么这10次射击中,甲、乙成绩的稳定情况是 A.甲较为稳定B.乙较为稳定C.两个人成绩一样稳定D.不能确定
8.用两个全等的直角三角形纸板拼图,不一定能拼出的图形是
A.菱形B. 平行四边形 C.等腰三角形 D.矩形
9.已知,在平面直角坐标系xOy中,点A( -4,0 ),点B在直线y=x+2上.当A,B两点间的距离最小时,点B的坐标是
A.(-2-2 , -2 ) B.(-2-2, 则max{2x,x2+2}的结果为
A.2x?x?2 B.2x?x?2 C.2x D.x?2 二、填空题(本题共8道小题,每题2分,共16分) 11.点P(-3,1)到y轴的距离是______. 12.函数y?1中,自变量x的取值范围是______.
x?1222 ) C.( -3,-1 ) D.(-3, -2 )
10. 设max{m,n}表示m,n(m≠ n)两个数中的最大值.例如max{-1,2}=2,max{12,8}=12,
213.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时的绿化面积为______平方米.
14.点P,y2)是一次函数y= 4x+2图象上的两个点. ,y1),点P2(x21(x1若x1?x2,则y1______y2(填“>”或“<”)
15.如图,在菱形ABCD中,对角线AC,BD相交于点O,E是AB的中点,连结EO.若EO =2,则CD的长为______.
16.若m是方程x?x?4?0的根,则代数式m?5m?5的值是______ . 17.写出一个同时满足下列两个条件的一元二次方程______ . (1)二次项系数是1 (2)方程的两个实数根异号
18.印度数学家什迦罗(1141年-1225年)曾提出过“荷花问题”: 平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边; 渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅? 如图所示:荷花茎与湖面的交点为O,点O距荷花的底端A的距离为0.5尺; 被强风吹一边后,荷花底端与湖面交于点B,点B到点O的距离为2尺,则湖水深度OC的长是尺.
三、解答题(本题共11道小题,第19小题4分,其余各题每小题5分,共54分) 19. 已知一次函数的图象与直线y=-3x+1平行,且经过点A(1,2),求这个一次函数的表达式.
23220.解方程:x?4x?1?0.
21.某年级进行“成语大会”模拟测试,并对测试成绩(x分)进行了分组整理,各分数段成绩如下表所示: 分数段 人数 x≥90 24 80≤x<90 64 70≤x<80 49 60≤x<70 45 x<60 18 2填空:
(1)这个年级共有名学生;
(2)成绩在分数段的人数最多,占全年级总人数的比值是;
(3)成绩在60分以上(含60分)为及格,这次测试全年级的及格率是 .
22.已知关于x的一元二次方程mx2-(2m+1)x+(m+2)=0有两个不相等的实数根,求m的取值范围.
1
23.已知一次函数的图象经过点(-1, -5),且与正比例函数y= x的图象相交于点(2,a).
2求这个一次函数的图象与y轴的交点坐标.
24.已知:如图,在□ABCD中,点E,F分别在BC,AD上,且BE=FD,求证:AE=CF.
25.已知:如图,在菱形ABCD中,∠BCD=2∠ABC,AC=4,求菱形ABCD的周长.
26.已知:如图,矩形ABCD,E是AB上一点,连接DE,使DE=AB,过C作CF⊥DE于点F.求证:CF=CB.
。
27.已知:如图,在正方形ABCD中,M,N分别是边AD,CD上的点,且∠MBN=45,连接MN.求证:MN=AM+CN.
28.在平面直角坐标系xOy中,点A(?3,2),点B是x轴正半轴上一动点,连结AB,以AB为腰在x轴的上方作等腰直角△ABC,使AB=BC. (1)请你画出△ABC;
(2)若点C(x,y),求y与x的函数关系式.