最新人教版八年级数学上册全等三角形证明经典50题及答案解析-精品试题.docx

8. 已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2

A 1 2 B E C F D

证明:连接BF和EF。

∵ BC=ED,CF=DF,∠BCF=∠EDF。

∴ 三角形BCF全等于三角形EDF(边角边)。 ∴ BF=EF,∠CBF=∠DEF。 连接BE。

在三角形BEF中,BF=EF。 ∴ ∠EBF=∠BEF。 又∵ ∠ABC=∠AED。 ∴ ∠ABE=∠AEB。 ∴ AB=AE。

在三角形ABF和三角形AEF中, AB=AE,BF=EF,

∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF。 ∴ 三角形ABF和三角形AEF全等。 ∴ ∠BAF=∠EAF (∠1=∠2)。

9. 已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC

A 1 2 F C D E B

过C作CG∥EF交AD的延长线于点G CG∥EF,可得,∠EFD=CGD DE=DC

∠FDE=∠GDC(对顶角) ∴△EFD≌△CGD EF=CG ∠CGD=∠EFD 又EF∥AB ∴∠EFD=∠1 ∠1=∠2 ∴∠CGD=∠2

∴△AGC为等腰三角形, AC=CG 又 EF=CG ∴EF=AC

10. 已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C

A B D C

证明:延长AB取点E,使AE=AC,连接DE ∵AD平分∠BAC ∴∠EAD=∠CAD ∵AE=AC,AD=AD ∴△AED≌△ACD (SAS) ∴∠E=∠C ∵AC=AB+BD ∴AE=AB+BD ∵AE=AB+BE ∴BD=BE ∴∠BDE=∠E ∵∠ABC=∠E+∠BDE ∴∠ABC=2∠E ∴∠ABC=2∠C

11. 已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE

在AE上取F,使EF=EB,连接CF ∵CE⊥AB

∴∠CEB=∠CEF=90° ∵EB=EF,CE=CE, ∴△CEB≌△CEF ∴∠B=∠CFE

∵∠B+∠D=180°,∠CFE+∠CFA=180° ∴∠D=∠CFA ∵AC平分∠BAD ∴∠DAC=∠FAC 又∵AC=AC

∴△ADC≌△AFC(SAS) ∴AD=AF

∴AE=AF+FE=AD+BE

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4