低碳钢、铸铁的扭转破坏实验
一:实验目的和要求 1、掌握扭转试验机操作。 2、低碳钢的剪切屈服极限τs。 3、低碳钢和铸铁的剪切强度极限τb。
4、观察比较两种材料的扭转变形过程中的变形及其破坏形式,并对试件断口形貌进行分析。 二:实验设备和仪器 1、材料扭转试验机 2、游标卡尺 三、实验原理 1、低碳钢扭转实验
低碳钢材料扭转时载荷-变形曲线如图(a)所示。
T Tb Ts 0 φ
图1. 低碳钢材料的扭转图
1. 低碳钢材料的扭转图
(a) (b) (c) 图2. 低碳钢圆轴试件扭转时的应力分布示意图
ρ dA τ τs
τs 低碳钢试件在受扭的最初阶段,扭矩T与扭转角φ成正比关系(见图1),横截面上剪应力τ沿半径线性分布,如图2(a)所示。随着扭矩T的增大,横截面边缘处的剪应力首先达到剪切屈服极限τ
s且塑性区逐渐向圆心扩展,形成环形
塑性区,但中心部分仍是弹性的,见图2(b)。试件继续变形,屈服从试件表层向心部扩展直到整个截面几乎都是塑性区,如图2(c)所示。此时在T-φ曲线上出现屈服平台(见图1),试验机的扭矩读数基本不动,此时对应的扭矩即为屈服扭矩Ts。随后,材料进入强化阶段,变形增加,扭矩随之增加,直到试件破坏为止。因扭转无颈缩现象。所以,扭转曲线一直上升直到破坏,试件破坏时的扭矩即为最大扭矩Tb。由Ts????sdA??s?Ad/20?(2??d?)??sWt 可得低碳钢材料的
43扭转屈服极限?s?Wt?3Ts3T;同理,可得低碳钢材料扭转时强度极限?b?b,其中4Wt4Wt?16d3为抗扭截面模量。
2、铸铁扭转实验
铸铁试件受扭时,在很小的变形下就会发生破坏,其扭转图如图3所示。 T Tb
O
φ
图3. 铸铁材料的扭转图
从扭转开始直到破坏为止,扭矩T与扭转角近似成正比关系,且变形很小,横截面上剪应力沿半径为线性分布。试件破坏时的扭矩即为最大扭矩Tb,铸铁材料的扭转强度极限为?b?Tb。 Wt低碳钢试样和铸铁试样的扭转破坏断口形貌有很大的差别,图4(a)所示低碳钢试样的断面与横截面重合,断面是最大切应力作用面,断口较为平齐,可知为剪切破坏;图(b)所示铸铁试样的断面是与试样轴线成45度角的螺旋面,断
面是最大拉应力作用面,断口较为粗糙,因而最大拉应力造成的拉伸断裂破坏。
图4. 低碳钢和铸铁的扭转端口形状 四、实验步骤 低碳钢实验步骤:
1. 测量试样尺寸 在试件两端及中部位置,沿两个相互垂直的方向,测量试样直径,以其平均值计算个横截面面积。
2. 检查设备线路连接是否接好,并打开设备电源以及配套软件操作界面。 3. 在试样上安装扭角测试装置,将一个定位环夹盒套在试样的一端,装上卡盘,将螺钉拧紧。再将另一个定位环夹套在试样的另一端,装上另一卡盘;根据不同的试样标距要求,将试样搁放在相应的的V形块上,使两卡盘与V形块的两端贴紧, 保证卡盘与试样垂直,以确保标距准确,将卡盘上的螺母拧紧。 4. 将试验机两端夹头对正,装夹试件,进行保护,清零。
5. 选择低碳钢扭转实验方案,记录低碳钢试件的屈服扭矩Ts和最大扭矩Tb。 6. 实验结束后,取下试件,观察试样破坏断口形貌,打印实验结果,关闭软件,关闭电源。 铸铁实验步骤:
与低碳钢扭转实验步骤相同。铸铁是脆性材料,只需记录铁铸试件的最大扭矩Tb,无需安装扭角测量装置。