奥数行程问题归纳总结及部分例题及答案

奥数行程:多人行程的要点及解题技巧

行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:

这三个量是:路程(s)、速度(v)、时间(t)

三个关系:1.简单行程:路程=速度×时间

2.相遇问题:路程和=速度和×时间

3.追击问题:路程差=速度差×时间

牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。

如“多人行程问题”,实际最常见的是“三人行程”

例:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。在途中,甲和乙相遇后3分钟和丙相遇。问:这个花圃的周长是多少米?

分析:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。

第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)

第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷(38-36)=114(分钟)

第二个相遇:在114分钟里,甲、乙二人一起走完了全程

所以花圃周长为(40+38)×114=8892(米)

我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。

总之,行程问题是重点,也是难点,更是锻炼思维的好工具。只要理解好“三个量”之间的“三个关系”,解决行程问题并非难事!

奥数行程:多人行程例题及答案(一)

行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行

程问题的身影。多人行程---这类问题主要涉及的人数为3人,主要考察的问题就是求前两个人相遇或追及的时刻,第三个人的位置,解题的思路就是把三人问题转化为寻找两两人之间的关系。

例1.甲乙丙三人同时从东村去西村,甲骑自行车每小时比乙快12公里,比丙快15公里,甲行3.5小时到达西村后立刻返回。在距西村30公里处和乙相聚,问:丙行了多长时间和甲相遇?

答案一:

设乙每小时行x公里,则甲为x+12,丙为x-15+12=x-3 3.5*12=(x+12)*2

x=9甲为21公里,丙为6公里, 21*3.5*2/(21+6)=5.44小时 丙行了5.44小时和甲相遇 答案二:

在距西村30公里处和乙相聚,则甲比乙多走60公里, 而甲骑自行车每小时比乙快12公里, 所以,甲乙相聚时所用时间是60/12=5小时, 所以甲从西村到和乙相聚用了5-3.5=1.5小时, 所以,甲速是:30/1.5=20公里/小时, 所以,丙速是:20-15=5公里/小时, 东村到西村的距离是:20*3.5=70公里,

所以,甲丙相遇时间是:(2*70)/(20+5)=5.6小时

例2.难度:高难度

甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为60千米/时和48千米/时。有一辆迎面开来的卡车分别在他们出发后6时、7时、8时先后与甲、乙、丙三辆车相遇。求丙车的速度。

【解答】

解题思路:(多人相遇问题要转化成两两之间的问题,咱们的相遇和追击公式也是研究的两者。另外ST图也是很关键) 第一步:当甲经过6小时与卡车相遇时,乙也走了6小时,甲比乙多走了660-486=72千米;(这也是现在乙车与卡车的距离)

第二步:接上一步,乙与卡车接着走1小时相遇,所以卡车的速度为72-481=24

第三步:综上整体看问题可以求出全程为:(60+24)6=504或(48+24)7=504

第四步:收官之战:5048-24=39(千米)

注意事项:画图时,要标上时间,并且多人要同时标,以防思路错乱!

例3.难度:高难度

李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。0.5小时后,营地老师闻讯前来迎接,每小时比李华多走1.2千米,又经过了1.5小时,张明从学校骑车去营地报到。结果3人同时在途中某地相遇。问:张明每小时行驶多少千米?

【解答】

老师出发时和李华相距20.4-4×0.5=18.4千米,再过18.4÷(4+4+1.2)=2小时相遇,相遇地点距学校2×4+2=10千米,张明行驶的时间为0.5小时,因此张明的速度为10÷0.5=20千米/时。

奥数行程:多人行程例题及答案(二)

行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。多人行程---这类问题主要涉及的人数为3 人,主要考察的问题就是求前两个人相遇或追及的时刻,第三个人的位置,解题的思路就是把三人问题转化为寻找两两人之间的关系。

例1.AB两地相距30千米,甲乙丙三人同时从A到B,而且要求同时到达。现在有两辆自行车,但不许带人,但可以将自行车放在中途某处,后来的人可以接着骑。已知骑自行车的平均速度为每小时20千米,甲步行的速度是每小时5千米,乙和丙每小时4千米,那么三人需要多少小时可以同时到达?

【解答】因为乙丙步行速度相等,所以他们两人步行路程和骑车路程应该是相等的。对于甲因为他步行速度快一些,所以骑车路程少一点,步行路程多一些。

现在考虑甲和乙丙步行路程的距离。甲多步行1千米要用1/5小时,乙多骑车1千米用1/20小时,甲多用1/5-1/20=3/20小时。

甲步行1千米比乙少用1/4-1/5=1/20小时。,所以甲比乙多步行的路程是乙步行路程的:1/20/(3/20=1/3.

这样设乙丙步行路程为3份,甲步行4份。如下图安排:

这样甲骑车行骑车的3/5,步行2/5.

所以时间为:30*3/5/20+30*2/5/5=3.3小时。

例2.有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。在途中,甲和乙相遇后3分钟和丙相遇。问:这个花圃的周长是多少米?

【解答】这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4