苏教版八年级上册数学[平面直角坐标系(提高)知识点整理及重点题型梳理]

精品文档 用心整理

苏教版八年级上册数学

重难点突破

知识点梳理及重点题型巩固练习

平面直角坐标系(提高)

【学习目标】

1.理解平面直角坐标系概念,能正确画出平面直角坐标系.

2.能在平面直角坐标系中,根据坐标确定点,以及由点求出坐标,掌握点的坐标的特征. 3.由数轴到平面直角坐标系,渗透类比的数学思想.

【要点梳理】

要点一、有序数对

定义:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b). 要点诠释:

有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号. 要点二、平面直角坐标系与点的坐标的概念 1. 平面直角坐标系

平面内两条互相垂直的数轴构成平面直角坐标系,简称直角坐标系.水平的数轴称为x轴或横轴,向右为正方向;铅直方向的数轴称为y轴或纵轴,向上为正方向,两轴的交点O是原点(如图1).

要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的. 2. 点的坐标

在平面直角坐标系中,一对有序实数可以确定一个点的位置;反过来,任意一点的位置都可以用一对有序实数来表示.这样的有序实数对叫做点的坐标.平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标、纵坐标,横坐标写在纵坐标的前面.有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.

资料来源于网络 仅供免费交流使用

精品文档 用心整理

要点诠释:

(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开. (2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离. (3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的. 要点三、坐标平面 1. 象限

建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个区域,按逆时针顺序分别记为第一、二、三、四象限,如下图.

要点诠释:

(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.

(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方. 2. 坐标平面的结构

坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限. 这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.

要点四、点坐标的特征

1.各个象限内和坐标轴上点的坐标符号规律

要点诠释:

资料来源于网络 仅供免费交流使用

精品文档 用心整理

(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.

(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.

(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况. 2.象限的角平分线上点坐标的特征

第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);

第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a). 3.关于坐标轴对称的点的坐标特征

P(a,b)关于x轴对称的点的坐标为 (a,-b); P(a,b)关于y轴对称的点的坐标为 (-a,b); P(a,b)关于原点对称的点的坐标为 (-a,-b). 4.平行于坐标轴的直线上的点

平行于x轴的直线上的点的纵坐标相同; 平行于y轴的直线上的点的横坐标相同. 【典型例题】

类型一、有序数对表示位置

1.如图是小刚的一张笑脸,他对妹妹说:如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( ). A.(1,0) B.(-1,0) C.(-1,1) D.(1,-1) 【思路点拨】由(0,2)表示左眼,用(2,2)表示右眼,可以确定平面直角坐标系中x轴与y轴的位置,从而可以确定嘴的位置. 【答案】A. 【解析】

解:根据(0,2)表示左眼,用(2,2)表示右眼, 可得嘴的坐标是(1,0),

故答案为A. 【总结升华】此题考查了坐标确定位置,由已知条件正确确定坐标轴的位置是解决本题的关键.

类型二、平面直角坐标系与点的坐标的概念

2.有一个长方形ABCD,长为5,宽为3,先建立一个平面直角坐标系,在此坐标系下求出A,B,C,D各点的坐标.

【答案与解析】

解:本题答案不唯一,现列举三种解法.

解法一:以点A为坐标原点,边AB所在的直线为x轴,边AD所在直线为y轴,建立平面

资料来源于网络 仅供免费交流使用

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4