数学试卷
命题人:柳剑军 复核人:姚斌 (满分:130分,考试时间:120分钟)
一、选择题(每小题3分,共30分) 1、下列方程中,是一元二次方程的是 A.x2-2xy+y2=0
( ) 1D.x+=0
x
B.x(x+3)=x2-1 C.x2-2x=3
2、关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为
A.m?9 4 9B.m?
4
9C.m?
4
( )
9D.m??
4
( ) 7D.
2D. 4:1
3、如图,△ABC中,DE∥BC,DE=1,AD=2,DB=3,则BC的长是
135A. B. C.
222A.1:2
第3题
第6题
4、若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为 ( )
B. 2:1
C. 1:4
5、在Rt△ABC中,∠C=90°,若sinA=A.
3,则cosB的值是 5
C.
D.
( )
4 5 B.
3 5
3 4
4 36、如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为
A.
( )
C.4km
D. 22km
?3?1km
?B.23km
7、某种商品零售价经过两次降价后的价格为降价前的81%,则平均每次降价的百分率是
8、在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形相似.对于两人的观点,下列说法正确的是
( )
C.两人都对 D.两人都不对
A.甲对,乙不对 B.甲不对,乙对
( )
A.10%
B.19%
C.9.5%
D.20%
数学试卷
第8题
第10题
9.在直角坐标系中,直线a向上平移3个单位后所得直线b经过点A(0,3),将直线b绕点A顺时针旋转60°后所得直线经过点B(-3,0),则直线a的函数关系式为( ) A.y=-3x
B.y=-
33
x C.y=-3x+6 D.y=-x+6 33
10、如图,点P(—1,1)在双曲线上,过点P的直线l1与坐标轴分别交于A、B两点,且tan∠BAO=1.点M是该双曲线在第四象限上的一点,过点M的直线l2与双曲线只有一个公共点,并与坐标轴分别交于点C、点D.则四边形ABCD的面积最小值为( ) A.6
B.8
C.10
D.不能确定
二、填空题(每空2分,共16分)
11、方程x2﹣3x=0的根为 .
12、已知x1、x2是一元二次方程x2—4x+1=0的两个根,则x1x2= .
13、如图,在□ABCD中,F是BC上的一点,直线DF与AB的延长线相交于点E,BP∥DF,且与AD相交于点P,请从图中找出一组相似的三角形: .
14、如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:2,点A的坐标为(0,1),则点E的坐标是 .
15、孔明同学在距某电视塔塔底水平距离500米处,看塔顶的仰角为20°(不考虑身高因素),则此塔高约为 米(结果保留整数,参考数据:sin20°≈0.3420,sin70°≈0.9397,tan20°≈0.3640,tan70°≈2.7475).
16、如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=
第16题
第18题
1∠BAC,则tan∠BPC= . 2数学试卷
17、在平面直角坐标系xOy中,已知一次函数y=kx—b的图像经过点P(1,1),与x轴交于点A,与y轴交于点B,且tan∠ABO=3,那么A点的坐标是 .
18、如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交
4AC于点E,且cosα=.下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE
5为直角三角形时,BD为8;④0<CE≤6.4.其中正确的结论是 .(把你认为正确结论的序号都填上)
三、解答题(共10题,共84分) 19.(本题满分8分)
?1?(1)计算:4?????2tan45?; (2)解方程: x2-2x-4=0.
?3?0
20.(本题满分8分)
在矩形ABCD中, CF⊥BD分别交BD、AD于点E、F,连接BF. (1)求证:△DEC∽△FDC;
(2)若DE=23,F为AD的中点,求BD的长度.
21.(本题满分8分)如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x. (1)求AD的长;
(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由.
22.(本题满分6分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.
(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由; (2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由; (3)如果△ABC是等边三角形,试求这个一元二次方程的根.