µÚ¶þÕÂ Ëæ»ú±äÁ¿¼°Æä·Ö²¼
1¡¢½â£º
É蹫˾Å⸶½ð¶îΪX£¬ÔòXµÄ¿ÉÄÜֵΪ£» Ͷ±£Ò»ÄêÄÚÒòÒâÍâËÀÍö£º20Íò£¬¸ÅÂÊΪ0.0002 Ͷ±£Ò»ÄêÄÚÒòÆäËûÔÒòËÀÍö£º5Íò£¬¸ÅÂÊΪ0.0010
Ͷ±£Ò»ÄêÄÚûÓÐËÀÍö£º0£¬¸ÅÂÊΪ1-0.0002-0.0010=0.9988 ËùÒÔXµÄ·Ö²¼ÂÉΪ£º 25 0 0 P000.0002 .0010 .9988 2¡¢Ò»´üÖÐÓÐ5ֻƹÅÒÇò£¬±àºÅΪ1¡¢2¡¢3¡¢4¡¢5£¬ÔÚÆäÖÐͬʱȡÈýÖ»£¬ÒÔX±íʾȡ³öµÄÈýÖ»ÇòÖеÄ×î´óºÅÂ룬д³öËæ»ú±äÁ¿XµÄ·Ö²¼ÂÉ
½â£ºX¿ÉÒÔȡֵ3£¬4£¬5£¬·Ö²¼ÂÉΪ
P(X?3)?P(Ò»ÇòΪ3ºÅ,Á½ÇòΪ1,2ºÅ)?21?C23C5?11021?C33C5P(X?4)?P(Ò»ÇòΪ4ºÅ,ÔÙÔÚ1,2,3ÖÐÈÎÈ¡Á½Çò)??310?610P(X?5)?P(Ò»ÇòΪ5ºÅ,ÔÙÔÚ1,2,3,4ÖÐÈÎÈ¡Á½Çò)?21?C43C5 Ò²¿ÉÁÐΪϱí X£º 3£¬ 4£¬5
136P£º ,,1010103¡¢ÉèÔÚ15ֻͬÀàÐÍÁã¼þÖÐÓÐ2Ö»ÊÇ´ÎÆ·£¬ÔÚÆäÖÐÈ¡Èý´Î£¬Ã¿´ÎÈÎȡһֻ£¬×÷²»·Å»Ø³éÑù£¬ÒÔX±íʾȡ³ö´ÎÆ·µÄÖ»Êý£¬£¨1£©ÇóXµÄ·Ö²¼ÂÉ£¬£¨2£©»³ö·Ö²¼ÂɵÄͼÐΡ£
½â£ºÈÎÈ¡ÈýÖ»£¬ÆäÖÐк¬´ÎÆ·¸öÊýX¿ÉÄÜΪ0£¬1£¬2¸ö¡£
3C1322 P(X?0)?3?C1535P(X?1)?P(X?2)?12C2?C133C1521C2?C133C15??12 351 35P ÔÙÁÐΪϱí x O 1 2 X£º 0£¬ 1£¬ 2
22121P£º ,,3535354¡¢½øÐÐÖØ¸´¶ÀÁ¢ÊµÑ飬Éèÿ´Î³É¹¦µÄ¸ÅÂÊΪp£¬Ê§°ÜµÄ¸ÅÂÊΪq =1£p(0
£¨2£©½«ÊµÑé½øÐе½³öÏÖr´Î³É¹¦ÎªÖ¹£¬ÒÔY±íʾËùÐèµÄÊÔÑé´ÎÊý£¬ÇóYµÄ·Ö²¼ÂÉ¡£
1 / 16
£¨´Ëʱ³ÆY·þ´ÓÒÔr, pΪ²ÎÊýµÄ°Í˹¿¨·Ö²¼¡££©
£¨3£©Ò»ÀºÇòÔ˶¯Ô±µÄͶÀºÃüÖÐÂÊΪ45%£¬ÒÔX±íʾËûÊ×´ÎͶÖÐʱÀÛ¼ÆÒÑͶÀºµÄ´ÎÊý£¬Ð´³öXµÄ·Ö²¼ÂÉ£¬²¢¼ÆËãXȡżÊýµÄ¸ÅÂÊ¡£
£½â£º£¨1£©P (X=k)=qk1p k=1,2,??
£¨2£©Y=r+n={×îºóÒ»´ÎʵÑéǰr+n£1´ÎÓÐn´Îʧ°Ü£¬ÇÒ×îºóÒ»´Î³É¹¦}
P(Y?r?n)?Crn?n?1qnpr?1p?Crn?n?1qnpr,n?0,1,2,?,ÆäÖÐ q=1£p£¬
r?1rk?r»ò¼Çr+n=k£¬Ôò P{Y=k}=Ck,k?r,r?1,? ?1p(1?p) £¨3£©P (X=k) = (0.55)k£10.45 k=1,2¡
P (XȡżÊý)=
?k?1?P(X?2k)??k?1?(0.55)2k?10.45?11 315¡¢ Ò»·¿¼äÓÐ3ÉÈͬÑù´óСµÄ´°×Ó£¬ÆäÖÐÖ»ÓÐÒ»ÉÈÊÇ´ò¿ªµÄ¡£ÓÐÒ»Ö»Äñ×Ô¿ª×ŵĴ°×Ó·ÉÈëÁË·¿¼ä£¬ËüÖ»ÄÜ´Ó¿ª×ŵĴ°×ӷɳöÈ¥¡£ÄñÔÚ·¿×ÓÀï·ÉÀ´·ÉÈ¥£¬ÊÔͼ·É³ö·¿¼ä¡£¼Ù¶¨ÄñÊÇûÓмÇÒäµÄ£¬Äñ·ÉÏò¸÷ÉÈ´°×ÓÊÇËæ»úµÄ¡£
£¨1£©ÒÔX±íʾÄñΪÁ˷ɳö·¿¼äÊԷɵĴÎÊý£¬ÇóXµÄ·Ö²¼ÂÉ¡£ £¨2£©»§Ö÷Éù³Æ£¬ËûÑøµÄÒ»Ö»Äñ£¬ÊÇÓмÇÒäµÄ£¬Ëü·ÉÏòÈÎÒ»´°×ӵij¢ÊÔ²»¶àÓÚÒ»´Î¡£ÒÔY±íʾÕâÖ»´ÏÃ÷µÄÄñΪÁ˷ɳö·¿¼äÊԷɵĴÎÊý£¬Èç»§Ö÷Ëù˵ÊÇȷʵµÄ£¬ÊÔÇóYµÄ·Ö²¼ÂÉ¡£
£¨3£©ÇóÊÔ·É´ÎÊýXСÓÚYµÄ¸ÅÂÊ£»ÇóÊÔ·É´ÎÊýYСÓÚXµÄ¸ÅÂÊ¡£ ½â£º£¨1£©XµÄ¿ÉÄÜȡֵΪ1£¬2£¬3£¬?£¬n£¬?
P {X=n}=P {ǰn£1´Î·ÉÏòÁËÁí2ÉÈ´°×Ó£¬µÚn´Î·ÉÁ˳öÈ¥}
21 =()n?1?£¬ n=1£¬2£¬??
33£¨2£©YµÄ¿ÉÄÜȡֵΪ1£¬2£¬3
1 3 P {Y=2}=P {µÚ1´Î·ÉÏò Áí2ÉÈ´°×ÓÖеÄÒ»ÉÈ£¬µÚ2´Î·ÉÁ˳öÈ¥}
211 =??
323 P {Y=3}=P {µÚ1£¬2´Î·ÉÏòÁËÁí2ÉÈ´°×Ó£¬µÚ3´Î·ÉÁ˳öÈ¥}
2!1 =?
3!3 P {Y=1}=P {µÚ1´Î·ÉÁ˳öÈ¥}=
(3)P{X?Y}????P{Y?k}P{X?Y|Y?k}k?133?P{Y?k}P{X?Y|Y?k}?P{Y?k}P{X?k}3?È«¸ÅÂʹ«Ê½²¢×¢Òâµ½? ??P{X?Y|Y?1}?0??
??×¢Òâµ½X,Y¶ÀÁ¢¼´ k?2 P{X?Y|Y?k}
111121?8?????????P{X?k}27333??333??ͬÉÏ£¬P{X?Y}?k?23?P{Y?k}P{X?Y|Y?k}
k?12 / 16
??k?13P{Y?k}P{X?k}?11121419 ??????333932781¹ÊP{Y?X}?1?P{X?Y}?P{X?Y)?38 816¡¢Ò»´óÂ¥×°ÓÐ5¸öͬÀàÐ͵ũˮÉ豸£¬µ÷²é±íÃ÷ÔÚÈÎһʱ¿Ìtÿ¸öÉ豸ʹÓõĸÅÂÊΪ0.1£¬ÎÊÔÚͬһʱ¿Ì
£¨1£©Ç¡ÓÐ2¸öÉ豸±»Ê¹ÓõĸÅÂÊÊǶàÉÙ£¿
225?22P(X?2)?C5pq?C5?(0.1)2?(0.9)3?0.0729 £¨2£©ÖÁÉÙÓÐ3¸öÉ豸±»Ê¹ÓõĸÅÂÊÊǶàÉÙ£¿
345P(X?3)?C5?(0.1)3?(0.9)2?C5?(0.1)4?(0.9)?C5?(0.1)5?0.00856 £¨3£©ÖÁ¶àÓÐ3¸öÉ豸±»Ê¹ÓõĸÅÂÊÊǶàÉÙ£¿
012P(X?3)?C5(0.9)5?C5?0.1?(0.9)4?C5?(0.1)2?(0.9)3 3?C5?(0.1)3?(0.9)2?0.99954
£¨4£©ÖÁÉÙÓÐÒ»¸öÉ豸±»Ê¹ÓõĸÅÂÊÊǶàÉÙ£¿ P(X?1)?1?P(X?0)?1?0.59049?0.40951
7¡¢ÉèʼþAÔÚÿһ´ÎÊÔÑéÖз¢ÉúµÄ¸ÅÂÊΪ0.3£¬µ±A·¢Éú²»ÉÙÓÚ3´Îʱ£¬Ö¸Ê¾µÆ·¢³öÐźš££¨1£©½øÐÐÁË5 ´Î¶ÀÁ¢ÊÔÑ飬ÇóָʾµÆ·¢³öÐźŵĸÅÂÊ ¡££¨2£©½øÐÐÁË7´Î¶ÀÁ¢ÊÔÑ飬ÇóָʾµÆ·¢³öÐźŵĸÅÂÊ
½â£º ÉèXΪ A·¢ÉúµÄ´ÎÊý¡£ ÔòX?B?0.3,n?. n=5£¬7
B:¡°Ö¸Ê¾µÈ·¢³öÐźš° ¢Ù P?B??P?X?3?? ¢ÚP?B??P?X?3??71?P?X?K??1??P?X?K?
k?306225k?37?C5k50.3k0.75?k?0.163
2 ?1?0.7?G?0.3?0.7?G0.3?0.7?0.353 8¡¢¼×¡¢ÒÒ¶þÈËͶÀº£¬Í¶ÖеĸÅÂʸ÷Ϊ0.6, 0.7£¬Áî¸÷ͶÈý´Î¡£Çó £¨1£©¶þÈËͶÖдÎÊýÏàµÈµÄ¸ÅÂÊ¡£ ¼ÇX±í¼×Èý´ÎͶÀºÖÐͶÖеĴÎÊý Y±íÒÒÈý´ÎͶÀºÖÐͶÖеĴÎÊý
ÓÉÓڼס¢ÒÒÿ´ÎͶÀº¶ÀÁ¢£¬Çұ˴ËͶÀºÒ²¶ÀÁ¢¡£ P (X=Y)=P (X=0, Y=0)+P (X=2, Y=2)+P (X=3, Y=3)
= P (X=0) P (Y=0)+ P (X=1) P (Y=1)+ P (X=2) P (Y=2)+ P (X=3) P (Y=3)
11 = (0.4)3¡Á (0.3)3+ [C3?0.6?(0.4)2]?[C3?0.7?(0.3)2]
22 ?[C3?(0.6)2?0.4]?[C3?(0.7)2?.3]?(0.6)3
?(0.7)3?0.321
£¨2£©¼×±ÈÒÒͶÖдÎÊý¶àµÄ¸ÅÂÊ¡£
P (X>Y)=P (X=1, Y=0)+P (X=2, Y=0)+P (X=2, Y=1)+
P (X=3) P (Y=0)+ P (X=3) P (Y=1)+ P (X=3) P (Y=2) =P (X=1) P (Y=0) + P (X=2, Y=0)+ P (X=2, Y=1)+ P (X=3) P (Y=0)+ P (X=3) P (Y=1)+ P (X=3) P (Y=2)
3 / 16