(ʽÖдúÊýºÍ±í´ïʽÖзûºÅΪ¶þ¸ö¡°+¡±ºÅºóÒ»¸ö¡°-¡±ºÅ) 2. Éè¼ÆÒªµã Ò»°ãµØ£¬½â²»µÈʽ
d?1?12?13?14?15?16???1n £¨4£©
£¨ÆäÖÐdΪ´Ó¼üÅÌÊäÈëµÄÕýÊý£©
ʽÖзûºÅΪ¶þ¸ö¡°+¡±ºÅºóÒ»¸ö¡°-¡±ºÅ£¬¼´·ÖĸÄܱ»3Õû³ýʱΪ¡°-¡±£¬Ê½ÖгöÏÖ¼õÔËË㣬µ¼Ö²»µÈʽµÄ½â¿ÉÄֶܷΡ£
ÉèÖÃÌõ¼þÑ»·£¬Ã¿ÈýÏ°üº¬¶þÕýÒ»¸º£©Ò»ÆðÇóºÍ£¬µÃÒ»¸öÇø¼ä½â¡£ È»ºó»Ø¹ýÍ·À´Ò»ÏîÏîÇóºÍ£¬µÃ¸ö±ðÀëÉ¢½â¡£ £¨2£© ³ÌÐòÉè¼Æ
// ½â²»µÈʽ£ºd<1+1/2-1/3+1/4+1/5-1/6+...+-1/n #include
printf(\ÇëÊäÈëÕýÕûÊýd: \ scanf(\
printf(\?+-1/n µÄ½â£º\ n=1;s=0; while(1)
{ s=s+1.0/n+1.0/(n+1)-1.0/(n+2); if(s>d) break; n=n+3;
}
printf(\µÃÒ»¸öÇø¼ä½â k=1;s=0; while(k { if(k%3>0) s=s+1.0/k; else s=s-1.0/k; if(s>d) // µÃÒ»¸öÀëÉ¢½â printf(\ k++; } } £¨3£© ³ÌÐòÔËÐÐʾÀý ÇëÊäÈëÕýÕûÊýd: 5 5<1+1/2-1/3+1/4+1/5-1/6+?+-1/n µÄ½â£º 13 n>=203938 n=203936 ×¢Ò⣺ǰһ¸öÊÇÇø¼ä½â£¬ºóÒ»¸öÊÇÀëÉ¢½â¡£ÒªÌرð×¢Ò⣬²»Òª°ÑºóÒ»¸ö½âÒÅʧ¡£ 2.5 Çó×îÖµ Çó×îֵͨ³£ÊdzÌÐòÉè¼Æ×î¾ß÷ÈÁ¦µÄ¿ÎÌâÖ®Ò»¡£±¾½Ú½éÉÜÁ½¸öÓÐȤµÄ×îÖµ°¸ÀýÇó½â£¬ÊÇÔËÓÃÇî¾ÙÇó½âµÄµäÐÍÊÖ·¨¡£ 2.5.1 »ùÓÚËØÊýµÄ´úÊýºÍ 1. °¸ÀýÌá³ö ¶¨ÒåºÍ£º s(n)?13?35?57?79?911?1113???2n?12n?1 (ºÍʽÖеÚkÏî¡À(2k-1)/(2k+1)µÄ·ûºÅʶ±ð£º·Ö×Ó·ÖĸÖÐÓÐÇÒÖ»ÓÐÒ»¸öËØÊý£¬È¡¡°+¡±£»·Ö×Ó·ÖĸÖÐûÓÐËØÊý»òÁ½¸ö¶¼ÊÇËØÊýʱȡ¡°-¡±¡£) 1) Çós(2011)(¾«È·µ½Ð¡Êýµãºó5λ)¡£ 2) Éè1<=n<=2011£¬µ±nΪ¶à´óʱ£¬s(n)×î´ó¡£ 3) Éè1<=n<=2011£¬µ±nΪ¶à´óʱ£¬s(n)×î½Ó½ü0¡£ 2. Éè¼ÆÒªµã ÔÚÇóºÍ֮ǰӦÓá°ÊÔÉÌÅб𷨡±¶ÔµÚk¸öÆæÊý2k-1ÊÇ·ñÎªËØÊý½øÐбê×¢£º Èô2k-1ÎªËØÊý£¬±ê×¢a[k]=1£» ·ñÔò£¬Èô2k-1²»ÊÇËØÊý£¬a[k]=0¡£ ÉèÖÃkÑ»·£¨1¡ª¡ªn£©£¬Ñ»·ÖзֱðÇé¿öÇóºÍ£º Èôa[k]+a[k+1]=1£¬¼´(2k-1)Óë(2k+1)ÖÐÓÐÇÒÖ»ÓÐÒ»¸öËØÊý£¬ÊµÊ©¡°+¡±£» ·ñÔò£¬Èôa[k]+a[k+1]!=0£¬¼´(2k-1)Óë(2k+1)ÖÐûÓÐËØÊý»òÓÐÁ½¸öËØÊý£¬ÊµÊ©¡°-¡±¡£ ͬʱ£¬ÉèÖÃ×î´ó±äÁ¿smax£¬×î½Ó½ü¡°0¡±µÄ¾ø¶ÔÖµ±äÁ¿mi¡£ ÔÚÑ»·ÖУ¬Ã¿¼ÆËãÒ»¸öºÍÖµs£¬Óësmax±È½ÏÈ·¶¨×î´óÖµ£¬Í¬Ê±¼Ç¼´ËʱµÄÏîÊýk1£» Òòs¿ÉÕý¿É¸º£¬sµÄ¾ø¶ÔÖµÓëmi±È½ÏÈ·¶¨×î½Ó½ü¡°0¡±µÄ¾ø¶ÔÖµ£¬¼Ç¼´ËʱµÄÏîÊýk2£¬Í¬Ê±¼Ç¼´ËʱµÄºÍÖµs2¡£ ×îºó£¬ÇóºÍÑ»·½áÊøÊ±Êä³öËùÇóÖµ¡£ 3. ³ÌÐòʵÏÖ // »ùÓÚËØÊýµÄ·ÖÊýºÍ 14 #include void main() { int t,j,n,k,k1,k2,a[3000]; double s,s2,smax,mi; printf(\ÇëÊäÈëÕûÊýn: \ scanf(\ for(k=1;k<=n+1;k++) a[k]=0; for(k=2;k<=n+1;k++) {for(t=0,j=3;j<=sqrt(2*k-1);j+=2) if((2*k-1)%j==0) {t=1;break;} if(t==0) a[k]=1; // ±ê¼ÇµÚk¸öÆæÊý2k-1ÎªËØÊý } s=0;smax=0;mi=10; for(k=1;k<=n;k++) {if(a[k]+a[k+1]==1) // ÅжÏa[k]Óëa[k+1]ÖÐÓÐÒ»¸öËØÊý s+=(double)(2*k-1)/(2*k+1); // ʵʩ¼Ó else s-=(double)(2*k-1)/(2*k+1); // ·ñÔò£¬ÊµÊ©¼õ if(s>smax) {smax=s;k1=k;} // ±È½ÏÇó×î´óÖµsmax if(fabs(s) {mi=fabs(s);k2=k;s2=s;} // ¾ø¶ÔÖµ±È½ÏÇó×î½Ó½ü0µã } printf(\ printf(\µ±k=%dʱsÓÐ×î´óÖµ: %.5f\\n\printf(\µ±k=%dʱs=%.5f×î½Ó½ü0. \\n\} 4. ³ÌÐòÔËÐÐʾÀý ÇëÊäÈëÕûÊýn: 2011 s(2011)=-211.88387 µ±k=387ʱsÓÐ×î´óÖµ: 35.88835 µ±k=785ʱs=-0.04341×î½Ó½ü0. 2.5.2 ÕûÊýµÄÒòÊý±È 1. °¸ÀýÌá³ö ÉèÕûÊýaµÄСÓÚÆä±¾ÉíµÄÒòÊýÖ®ºÍΪs£¬¶¨Òå 15 p(a)=s/a ΪÕûÊýaµÄÒòÊý±È¡£ ÊÂʵÉÏ£¬aΪÍêÈ«Êýʱ£¬p(a)=1¡£ ÓÐЩ×ÊÁÏ»¹½éÉÜÁËÒòÊýÖ®ºÍΪÊý±¾Éí2±¶µÄÕûÊý£¬Èçp(120)=2¡£ ÊÔÇóÖ¸¶¨Çø¼ä[x,y]ÖÐÕûÊýµÄÒòÊý±È×î´óÖµ¡£ 2. Éè¼ÆÒªµã ÉèÖÃmax´æ´¢ÒòÊý±È×î´óÖµ¡£Çî¾ÙÇø¼äÄÚÿһÕûÊýa£¬ÇóµÃÆäÒòÊýºÍs¡£Í¨¹ýs/aÓëmax±È½ÏÇóÈ¡ÒòÊý±È×î´óÖµ¡£ ¶Ô±È½ÏµÃÒòÊý±È×î´óµÄÕûÊý£¬Í¨¹ýÊÔÉÌÊä³öÆäÒòÊýºÍʽ¡£ 3. ³ÌÐòʵÏÖ // Çó[x,y]·¶Î§ÄÚÕûÊýµÄÒòÊý±È×î´óÖµ #include { double a,s,a1,s1,b,k,t,x,y,max=0; printf(\ÇóÇø¼ä[x,y]ÖÐÕûÊýµÄÒòÊý±È×î´óÖµ.\ printf(\ÇëÊäÈëÕûÊýx,y:\ scanf(\ for(a=x;a<=y;a++) // Çî¾ÙÇø¼äÄÚµÄËùÓÐÕûÊýa {s=1;b=sqrt(a); for(k=2;k<=b;k++) // ÊÔÉÌѰÇóaµÄÒòÊýk if(fmod(a,k)==0) s=s+k+a/k; // kÓëa/kÊÇaµÄÒòÊý£¬ÇóºÍ if(a==b*b) s=s-b; // Èç¹ûa=b^2,È¥µôÖØ¸´ÒòÊýb t=s/a; if(max printf(\ÕûÊý%.0fµÄÒòÊý±È×î´ó£º%.4f \\n\ printf(\µÄÒòÊýºÍΪ£º\\n\ printf(\Êä³öÆäÒòÊýºÍʽ for(k=2;k<=a1/2;k++) if(fmod(a1,k)==0) printf(\} £¨3£© ³ÌÐòÔËÐÐʾÀý ÇóÇø¼ä[x,y]ÖÐÕûÊýµÄÒòÊý±È×î´óÖµ.ÇëÊäÈëÕûÊýx,y: 1,2011 ÕûÊý1680µÄÒòÊý±È×î´ó£º2.5429 16