【例3】对于平面图形上的任意两点P,Q,如果经过某种变换得到新图形上的对应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是( )
A.平移 B.旋转 C.轴对称 D.位似
【解析】平移的性质是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,则平移变换是“等距变换”; 旋转的性质:旋转前、后的图形全等,则旋转变换是“等距变换”; 轴对称的性质:成轴对称的两个图形全等,则轴对称变换是“等距变换”; 位似变换的性质:位似变换的两个图形是相似形,则位似变换不一定是等距变换.
【学生解答】D
5.(2015宜宾中考)如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1∶2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为( B )
A.(1,2) B.(1,1) C.(,) D.(2,1)
13
6.(2015贵阳模拟)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴
1
上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC的面积的4,那么点B′的坐标是( D )
A.(-2,3) B.(2,-3)
C.(3,-2)或(-2,3) D.(-2,3)或(2,-3)
14