µÚ1Õ Ð÷ÂÛ
ϰÌâ
1£®¼òÊöÏÂÁиÅÄÊý¾Ý¡¢Êý¾ÝÔªËØ¡¢Êý¾ÝÏî¡¢Êý¾Ý¶ÔÏó¡¢Êý¾Ý½á¹¹¡¢Âß¼½á¹¹¡¢´æ´¢½á¹¹¡¢³éÏóÊý¾ÝÀàÐÍ¡£
2£®ÊÔ¾ÙÒ»¸öÊý¾Ý½á¹¹µÄÀý×Ó£¬ÐðÊöÆäÂß¼½á¹¹ºÍ´æ´¢½á¹¹Á½·½ÃæµÄº¬ÒåºÍÏ໥¹ØÏµ¡£ 3£®¼òÊöÂß¼½á¹¹µÄËÄÖÖ»ù±¾¹ØÏµ²¢»³öËüÃǵĹØÏµÍ¼¡£ 4£®´æ´¢½á¹¹ÓÉÄÄÁ½ÖÖ»ù±¾µÄ´æ´¢·½·¨ÊµÏÖ£¿ 5£®Ñ¡ÔñÌâ
£¨1£©ÔÚÊý¾Ý½á¹¹ÖУ¬´ÓÂß¼ÉÏ¿ÉÒÔ°ÑÊý¾Ý½á¹¹·Ö³É£¨ £©¡£ A£®¶¯Ì¬½á¹¹ºÍ¾²Ì¬½á¹¹ B£®½ô´Õ½á¹¹ºÍ·Ç½ô´Õ½á¹¹ C£®ÏßÐԽṹºÍ·ÇÏßÐԽṹ D£®ÄÚ²¿½á¹¹ºÍÍⲿ½á¹¹
£¨2£©ÓëÊý¾ÝÔªËØ±¾ÉíµÄÐÎʽ¡¢ÄÚÈÝ¡¢Ïà¶ÔλÖᢸöÊýÎ޹صÄÊÇÊý¾ÝµÄ£¨ £©¡£ A£®´æ´¢½á¹¹ B£®´æ´¢ÊµÏÖ C£®Âß¼½á¹¹ D£®ÔËËãʵÏÖ
£¨3£©Í¨³£ÒªÇóͬһÂß¼½á¹¹ÖеÄËùÓÐÊý¾ÝÔªËØ¾ßÓÐÏàͬµÄÌØÐÔ£¬ÕâÒâζ×Å£¨ £©¡£ A£®Êý¾Ý¾ßÓÐÍ¬Ò»ÌØµã
B£®²»½öÊý¾ÝÔªËØËù°üº¬µÄÊý¾ÝÏîµÄ¸öÊýÒªÏàͬ£¬¶øÇÒ¶ÔÓ¦Êý¾ÝÏîµÄÀàÐÍÒªÒ»Ö C£®Ã¿¸öÊý¾ÝÔªËØ¶¼Ò»Ñù
D£®Êý¾ÝÔªËØËù°üº¬µÄÊý¾ÝÏîµÄ¸öÊýÒªÏàµÈ £¨4£©ÒÔÏÂ˵·¨ÕýÈ·µÄÊÇ£¨ £©¡£ A£®Êý¾ÝÔªËØÊÇÊý¾ÝµÄ×îСµ¥Î» B£®Êý¾ÝÏîÊÇÊý¾ÝµÄ»ù±¾µ¥Î»
C£®Êý¾Ý½á¹¹ÊÇ´øÓнṹµÄ¸÷Êý¾ÝÏîµÄ¼¯ºÏ
D£®Ò»Ð©±íÃæÉϺܲ»ÏàͬµÄÊý¾Ý¿ÉÒÔÓÐÏàͬµÄÂß¼½á¹¹ £¨5£©ÒÔÏÂÓëÊý¾ÝµÄ´æ´¢½á¹¹Î޹صÄÊõÓïÊÇ£¨ £©¡£
A£®Ë³Ðò¶ÓÁÐ B. Á´±í C. ÓÐÐò±í D. Á´Õ» £¨6£©ÒÔÏÂÊý¾Ý½á¹¹ÖУ¬£¨ £©ÊÇ·ÇÏßÐÔÊý¾Ý½á¹¹
A£®Ê÷ B£®×Ö·û´® C£®¶Ó D£®Õ» 6£®ÊÔ·ÖÎöÏÂÃæ¸÷³ÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶È¡£ £¨1£©x=90; y=100;
while(y>0) if(x>100)
{x=x-10;y--;} else x++;
£¨2£©for (i=0; i for (j=0; j £¨3£©s=0; for i=0; i for(j=0; j s+=B[i][j]; sum=s; £¨4£©i=1; while(i<=n) i=i*3; £¨5£©x=0; for(i=1; i for (j=1; j<=n-i; j++) x++; £¨6£©x=n; //n>1 y=0; while(x¡Ý(y+1)* (y+1)) y++; £¨1£©O£¨1£© £¨2£©O£¨m*n£© £¨3£©O£¨n2£© £¨4£©O£¨log3n£© £¨5£©ÒòΪx++¹²Ö´ÐÐÁËn-1+n-2+¡¡£«1= n(n-1)/2£¬ËùÒÔÖ´ÐÐʱ¼äΪO£¨n2£© £¨6£©O(n) µÚ2Õ ÏßÐÔ±í 1£®Ñ¡ÔñÌâ £¨1£©Ò»¸öÏòÁ¿µÚÒ»¸öÔªËØµÄ´æ´¢µØÖ·ÊÇ100£¬Ã¿¸öÔªËØµÄ³¤¶ÈΪ2£¬ÔòµÚ5¸öÔªËØµÄµØÖ·ÊÇ£¨ £©¡£ A£®110 B£®108 C£®100 D£®120 £¨2£©ÔÚn¸ö½áµãµÄ˳Ðò±íÖУ¬Ëã·¨µÄʱ¼ä¸´ÔÓ¶ÈÊÇO(1)µÄ²Ù×÷ÊÇ£¨ £©¡£ A£®·ÃÎʵÚi¸ö½áµã£¨1¡Üi¡Ün£©ºÍÇóµÚi¸ö½áµãµÄÖ±½ÓǰÇý£¨2¡Üi¡Ün£© B£®ÔÚµÚi¸ö½áµãºó²åÈëÒ»¸öнáµã£¨1¡Üi¡Ün£© C£®É¾³ýµÚi¸ö½áµã£¨1¡Üi¡Ün£© D£®½«n¸ö½áµã´ÓСµ½´óÅÅÐò £¨3£© ÏòÒ»¸öÓÐ127¸öÔªËØµÄ˳Ðò±íÖвåÈëÒ»¸öÐÂÔªËØ²¢±£³ÖÔÀ´Ë³Ðò²»±ä£¬Æ½¾ùÒªÒÆ¶¯ µÄÔªËØ¸öÊýΪ£¨ £©¡£ A£®8 B£®63.5 C£®63 D£®7 £¨4£©Á´½Ó´æ´¢µÄ´æ´¢½á¹¹ËùÕ¼´æ´¢¿Õ¼ä£¨ £©¡£ A£®·ÖÁ½²¿·Ö£¬Ò»²¿·Ö´æ·Å½áµãÖµ£¬ÁíÒ»²¿·Ö´æ·Å±íʾ½áµã¼ä¹ØÏµµÄÖ¸Õë B£®Ö»ÓÐÒ»²¿·Ö£¬´æ·Å½áµãÖµ C£®Ö»ÓÐÒ»²¿·Ö£¬´æ´¢±íʾ½áµã¼ä¹ØÏµµÄÖ¸Õë D£®·ÖÁ½²¿·Ö£¬Ò»²¿·Ö´æ·Å½áµãÖµ£¬ÁíÒ»²¿·Ö´æ·Å½áµãËùÕ¼µ¥ÔªÊý £¨5£©ÏßÐÔ±íÈô²ÉÓÃÁ´Ê½´æ´¢½á¹¹Ê±£¬ÒªÇóÄÚ´æÖпÉÓô洢µ¥ÔªµÄµØÖ·£¨ £©¡£ A£®±ØÐëÊÇÁ¬ÐøµÄ B£®²¿·ÖµØÖ·±ØÐëÊÇÁ¬ÐøµÄ C£®Ò»¶¨ÊDz»Á¬ÐøµÄ D£®Á¬Ðø»ò²»Á¬Ðø¶¼¿ÉÒÔ £¨6£©ÏßÐÔ±í£ÌÔÚ£¨ £©Çé¿öÏÂÊÊÓÃÓÚʹÓÃÁ´Ê½½á¹¹ÊµÏÖ¡£ A£®Ðè¾³£Ð޸ģÌÖеĽáµãÖµ £Â£®Ðè²»¶Ï¶Ô£Ì½øÐÐɾ³ý²åÈë C£®£ÌÖк¬ÓдóÁ¿µÄ½áµã £Ä£®£ÌÖнáµã½á¹¹¸´ÔÓ £¨7£©µ¥Á´±íµÄ´æ´¢Ãܶȣ¨ £©¡£ A£®´óÓÚ1 B£®µÈÓÚ1 C£®Ð¡ÓÚ1 D£®²»ÄÜÈ·¶¨ £¨8£©½«Á½¸ö¸÷ÓÐn¸öÔªËØµÄÓÐÐò±í¹é²¢³ÉÒ»¸öÓÐÐò±í£¬Æä×îÉٵıȽϴÎÊýÊÇ£¨ £©¡£ A£®n B£®2n-1 C£®2n D£®n-1 £¨9£©ÔÚÒ»¸ö³¤¶ÈΪnµÄ˳Ðò±íÖУ¬ÔÚµÚi¸öÔªËØ£¨1¡Üi¡Ün+1£©Ö®Ç°²åÈëÒ»¸öÐÂÔªËØÊ±ÐëÏòºóÒÆ¶¯£¨ £©¸öÔªËØ¡£ A£®n-i B£®n-i+1 C£®n-i-1 D£®i (10) ÏßÐÔ±íL=(a1£¬a2,¡¡an)£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨ £©¡£ A£®Ã¿¸öÔªËØ¶¼ÓÐÒ»¸öÖ±½ÓǰÇýºÍÒ»¸öÖ±½Óºó¼Ì B£®ÏßÐÔ±íÖÐÖÁÉÙÓÐÒ»¸öÔªËØ C£®±íÖÐÖîÔªËØµÄÅÅÁбØÐëÊÇÓÉСµ½´ó»òÓÉ´óµ½Ð¡ D£®³ýµÚÒ»¸öºÍ×îºóÒ»¸öÔªËØÍ⣬ÆäÓàÿ¸öÔªËØ¶¼ÓÐÒ»¸öÇÒ½öÓÐÒ»¸öÖ±½ÓǰÇýºÍÖ±½Óºó¼Ì¡£ (11) ÈôÖ¸¶¨ÓÐn¸öÔªËØµÄÏòÁ¿£¬Ôò½¨Á¢Ò»¸öÓÐÐòµ¥Á´±íµÄʱ¼ä¸´ÔÓÐÔµÄÁ¿¼¶ÊÇ£¨ £©¡£ A£®O(1) B£®O(n) C£®O(n2) D£®O(nlog2n)