基因的转录、转录后
加工及逆转录
转录 (transcription)是以DNA单链为模板,NTP为原料,在DNA依赖的RNA聚合酶催化下合成RNA链的过程。与DNA的复制相比,有很多相同或相似之处,亦有其特点,它们之间的异同可简要示于表13-1
转录的模板是单链DNA,与复制的模板有较多的不同特点,引出了下列相关概念。转录过程只以基因组DNA中编码RNA(mRNA、tRNA、rRNA及小RNA)的区段为模板。把DNA分子中能转录出RNA的区段,称为结构基因(structure gene)。结构基因的双链中,仅有一股链作为模板转录成RNA,称为模板链(template strand),也称作Watson(W)链(Watson strand)、负(-)链(minus strand)或反意义链(antisense strand)。与模板链相对应的互补链,其编码区的碱基序列与mRNA的密码序列相同(仅T、U互换),称为编码链(coding strand),也称作Crick(C)链(Crick strand)、正(+)链(plus strand),或有意义链(sense strand)。不同基因的模板链与编码链,在DNA分子上并不是固定在某一股链,这种现象称为不对称转录(asymmetric transcription)。模板链在相同双链的不同单股时,由于转录方向都从5’→3’,表观上转录方向相反,如图13-1。 与DNA复制类似,转录过程在原核生物和真核生物中所需的酶和相关因子有所不同,转录过程及转录后的加工修饰亦有差异。下面的讨论中将分别叙述。
?
参与转录的酶
转录酶(transcriptase)是依赖DNA的RNA聚合酶(DNA dependent RNA polymerase,DDRP),亦称为DNA指导的RNA聚合酶(DNA directed RNA
polymerase),简称为RNA聚合酶(RNA pol)。它以DNA为模板催化RNA的合成。
原核生物和真核生物的转录酶,均能在模板链的转录起始部位,催化2个游离的
NTP形成磷酸二酯键而引发转录的起始,如图13-2所示。因此,转录的起始不需引物,这也是转录与复制在起始阶段的一大区别。 一、原核生物的RNA聚合酶
细菌中只发现一种RNA聚合酶,能催化mRNA,tRNA和rRNA等的合成,研究得比较清楚的是大肠杆菌(E coli)的RNA聚合酶。 (一)大肠杆菌RNA聚合酶的组成
大肠杆菌RNA聚合酶的分子量约450kDa,由四种5个亚基(α2ββ′σ)组成全酶(holoenzyne),σ亚基与全酶疏松结合,在胞内、外均容易从全酶中解离,解离后的部分(α2ββ′)称为核心酶(core enzyme)。通过利福霉素等抑制转录的实验研究,对转录酶各亚基的功能已有一定的认识:α亚基可能参与全酶的组装及全酶识别启动子,从而决定哪些基因可转录;β亚基与底物(NTP)及新生RNA链结合;β′亚基与模板DNA结合;β和β′亚基组成酶的活性中心,通过DNA的磷酸基团与核心酶的碱性基团间的非特异性吸附作用,核心酶能与模板DNA非特异性松驰结合;σ亚基的功能是识别启动子,辩认转录起始点,但不能单独与DNA模板结合,当它与核心酶结合时,可引起酶构象的改变,从而改变核心酶与DNA结合的性质,使全酶对转录起始点的亲和力比其他部位高4个数量级,在转录延长阶段,σ亚基与核心酶分离,仅由核心酶参与延长过程。因此,σ亚基实际上被认为是一种转录辅助因子,因而称为σ因子(σfactor)。 (二)σ因子
生物体在生命周期的不同阶段或在内、外环境有所变化时,其基因表达有一定的时、空顺序,以适应生长、发育及环境变化的需要。RNA聚合酶的活性是决定基因表达的重要一环。而σ因子是RNA聚合酶识别及结合启动子的亚基,原核生物中所有RNA的转录都由同一种RNA聚合酶催化,在生命周期的不同阶段或不同环境下,这个酶如何识别所有转录单位的启动子,是由识别启动子的σ因子来完成的。
基因启动子 -35和-10区的共有序列(图13-3)是σ因子识别的位点,如表13-2所示,不同的σ因子能识别的共有序列可以完全不同。 二、真核生物的RNA聚合酶
真核生物的RNA聚合酶已发现有三种,称为RNA聚合酶I、II和III,分别负责转录不同的RNA,它们对特异性抑制剂鹅膏蕈碱的敏感性亦有差异,如表13-3所示。
第二节转录过程
转录是生物合成RNA的过程,与复制相似,有起始、核苷酸链延长和链合成终止
三个阶段。 一、转录的起始
转录的起始,就是形成转录起始复合物的过程。这一阶段反应所需的辅助因子,在原核生物与真核生物之间有较大的差异。 ㈠原核生物转录的起始
转录的起始由RNA聚合酶与DNA模板的启动子(promoter)结合。
经过对百种以上原核生物不同基因的启动子进行分析,发现启动子具有下列的共同点:在-10bp处有一段共有序列(consensus sequence),富含AT,即 –TATAAT-,系Pribnow等首先发现,因而称为Pribnow盒(box),再往上游-35bp的中心处又有一组保守的共有序列,即-TTGACT-。启动子邻近的结构示如图13-3。 结合过程可分为二个步骤,首先由σ因子辨认启动子的–35区,全酶与该区结合,形成疏松的复合物,此时DNA双链未解开,因而称为封闭型转录起始复合物,继而RNA聚合酶移向–10区及转录起始点,在–20区处DNA发生局部解链,形成12~17bp的单链区,RNA聚合酶与DNA结合更紧密,形成开放型转录起始复合物。以单链的模板链为模板,RNA聚合酶上的起始位点和延伸位点被相应的NTP占据,聚合酶的β亚基催化第一个磷酸二酯键的生成,σ亚基从全酶解离,形成DNA-RNA聚合酶(核心酶)结合在一起的起始延伸复合物。 ㈡ 真核生物转录的起始
真核生物有三种RNA聚合酶,分别催化不同RNA的合成,每种酶都需要一些蛋白质辅助因子,称为转录因子(transcription factor,TF)。为方便讨论,转录因子的命名冠以聚合酶的名称。如RNA聚合酶Ⅱ所需的转录因子称为转录因子Ⅱ(transcription factorⅡ, TFⅡ)。
1. RNA聚合酶I催化的转录起始RNA聚合酶I催化前rRNA(40S RNA)的合成。前rRNA基因转录起始点上游有两个顺式作用元件(cis acting element),一个是跨越起始点的核心元件(core element),另一个在–100bp处有上游调控元件(upstream control element,UCE)。RNA聚合酶I催化的转录需要2种转录因子,分别称为上游结合因子(upstream binding factor,UBF)和选择性因子1(selective factor1,SL1)。SL1含有4个亚基,一个是TATA盒结合蛋白(TATA-binding protein,TBP),另3个是TBP相关因子(TBP-associated factors,TAF)。UBF与DNA结合令模板DNA发生弯曲,使相距上百bp的UCE和核心元件靠拢,接着SL1和pol I相继结合到UBF-DNA复合物上,完成起始复合物的组建,开始转录,如图13-4所示。 2.RNA聚合酶II催化的转录起始
RNA聚合酶II催化各种前体mRNA的合成。研究表明,RNA聚合酶II催化的转录