完美WORD格式
坐标下的分矢量at 和an ,前者只反映质点在切线方向速度大小的变化率,即 ,后者只反映质点速度方向的变化,它可由总加速度a 和at 得到.在求得t1 时刻质点的速度和法向加速度的大小后,可由公式 求ρ.
解 (1) 由参数方程 x =2.0t, y =19.0-2.0t2 消去t 得质点的轨迹方程:y =19.0 -0.50x2
(2) 在t1 =1.00s 到t2 =2.0s时间内的平均速度
(3) 质点在任意时刻的速度和加速度分别为
则t1 =1.00s时的速度 v(t)|t =1s=2.0i -4.0j 切向和法向加速度分别为
(4) t =1.0s质点的速度大小为 则
1-18 分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物
品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.
此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量vx 、vy求出,这样,也就可将重力加速度g 的切向和法向分量求得.
解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为 x =vt, y =1/2 gt2
飞机水平飞行速度v=100 m?6?1s-1 ,飞机离地面的高度y=100 m,由上述两式可得目标在飞机正下方前的距离
(2) 视线和水平线的夹角为
(3) 在任意时刻物品的速度与水平轴的夹角为
取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为
1-19 分析 这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原
理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向的分运动均为匀减速直线运动,其初速度分别为v0cosβ和v0sinβ,其加速度分别为gsinα和gcosα.在此坐标系中炮弹落地时,应有y =0,则x =OP.如欲使炮弹垂直击中坡面,则应满足vx =0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g 为恒矢量.故第一问也可由运动方程的矢量式计算,即 ,做出炮弹落地时
专业整理 知识分享
完美WORD格式
的矢量图[如图(B)所示],由图中所示几何关系也可求得 (即图中的r 矢量).
解1 由分析知,炮弹在图(a)所示坐标系中两个分运动方程为 (1) (2)
令y =0 求得时间t 后再代入式(1)得
解2 做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有 从中消去t 后也可得到同样结果.
(2) 由分析知,如炮弹垂直击中坡面应满足y =0 和vx =0,则 (3)
由(2)(3)两式消去t 后得
由此可知.只要角α和β满足上式,炮弹就能垂直击中坡面,而与v0 的大小无关.
讨论 如将炮弹的运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验一下.
1-20 分析 选定伞边缘O 处的雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度
v 沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中所示几何关系,即可求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布
解 (1) 如图(a)所示坐标系中,雨滴落地的运动方程为 (1) (2)
由式(1)(2)可得
由图(a)所示几何关系得雨滴落地处圆周的半径为
(2) 常用草坪喷水器采用如图(b)所示的球面喷头(θ0 =45°)其上有大量小孔.喷头旋转时,水滴以初速度v0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上.则以φ角喷射的水柱射程为
为使喷头周围的草坪能被均匀喷洒,喷头上的小孔数不但很多,而且还不能均匀分布,这是喷头设计中的一个关键问题.
1-21 分析 被踢出后的足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面内
的运动方程得到.由于水平距离x 已知,球门高度又限定了在y 方向的范围,故只需将x、y 值代入即可求出.
解 取图示坐标系Oxy,由运动方程 ,
消去t 得轨迹方程
专业整理 知识分享
完美WORD格式
以x =25.0 m,v =20.0 m?6?1s-1 及3.44 m≥y≥0 代入后,可解得 71.11°≥θ1 ≥69.92° 27.92°≥θ2 ≥18.89°
如何理解上述角度的范围?在初速一定的条件下,球击中球门底线或球门上缘都将对应有两个不同的投射倾角(如图所示).如果以θ>71.11°或θ <18.89°踢出足球,都将因射程不足而不能直接射入球门;由于球门高度的限制,θ 角也并非能取71.11°与18.89°之间的任何值.当倾角取值为27.92°<θ <69.92°时,踢出的足球将越过门缘而离去,这时球也不能射入球门.因此可取的角度范围只能是解中的结果.
1-22 分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方
程s =s(t),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量at,而加速度的法向分量为an=v2 /R.这样,总加速度为a =atet+anen.至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs=st -s0.因圆周长为2πR,质点所转过的圈数自然可求得.
解 (1) 质点作圆周运动的速率为
其加速度的切向分量和法向分量分别为 ,
故加速度的大小为
其方向与切线之间的夹角为
(2) 要使|a|=b,由 可得
(3) 从t=0 开始到t=v0 /b 时,质点经过的路程为
因此质点运行的圈数为
1-23 分析 首先应该确定角速度的函数关系ω=kt2.依据角量与线量的关系由特定
时刻的速度值可得相应的角速度,从而求出式中的比例系数k,ω=ω(t)确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移. 解 因ωR =v,由题意ω∝t2 得比例系数 所以
则t′=0.5s 时的角速度、角加速度和切向加速度分别为
总加速度
在2.0s内该点所转过的角度
1-24 分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的
专业整理 知识分享
完美WORD格式
方法即可得到.
解 (1) 由于 ,则角速度 .在t =2 s 时,法向加速度和切向加速度的数值分别为
(2) 当 时,有 ,即 得
此时刻的角位置为
(3) 要使 ,则有 t =0.55s
1-25 分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为
动参考系S′.v1 为S′相对S 的速度,v2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v1 ,雨滴相对地面竖直下落的速度为v2 ,旅客看到雨滴下落的速度v2′为相对速度,它们之间的关系为 (如图所示),于是可得
1-26 分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽
车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v2′的方向)应满足 .再由相对速度的矢量关系 ,即可求出所需车速v1.
解 由 [图(b)],有
而要使 ,则
1-27 分析 船到达对岸所需时间是由船相对于岸的速度v 决定的.由于水流速度u
的存在, v与船在静水中划行的速度v′之间有v=u +v′(如图所示).若要使船到达正对岸,则必须使v沿正对岸方向;在划速一定的条件下,若要用最短时间过河,则必须使v 有极大值.
解 (1) 由v=u +v′可知 ,则船到达正对岸所需时间为
(2) 由于 ,在划速v′一定的条件下,只有当α=0 时, v 最大(即v=v′),此时,船过河时间t′=d /v′,船到达距正对岸为l 的下游处,且有
1-28 分析 该问题涉及到运动的相对性.如何将已知质点相对于观察者O 的运动转换
到相对于观察者O′的运动中去,其实质就是进行坐标变换,将系O 中一动点(x,y)变换至系O′中的点(x′,y′).由于观察者O′相对于观察者O 作匀速运动,因此,该坐标变换是线性的.
专业整理 知识分享